Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tham khảo bài này nha
Link:https://olm.vn/hoi-dap/detail/266831819020.html
Chúc bạn học tốt
\(A=\left(x-y\right)\left(x^2-xy\right)-x\left(x^2+2y^2\right)\)
\(=x^3-x^2y-x^2y+xy^2-x^3-2xy^2\)
\(=-2x^2y-xy^2\)
\(=-2\cdot2^2\cdot\left(-3\right)-2\cdot\left(-3\right)^2\)
\(=8\cdot3-2\cdot9\)
=6
Ta có: \(x^2-2y^2=xy\)
\(\Leftrightarrow x^2-xy-2y^2=0\)
\(\Leftrightarrow x^2-2xy+xy-2y^2=0\)
\(\Leftrightarrow x\left(x-2y\right)+y\left(x-2y\right)=0\)
\(\Leftrightarrow\left(x-2y\right)\left(x+y\right)=0\)
Vì \(x+y\ne0\) nên x-2y=0
hay x=2y
Thay x=2y vào biểu thức \(A=\dfrac{x-y}{x+y}\), ta được:
\(A=\dfrac{2y-y}{2y+y}=\dfrac{y}{3y}=\dfrac{1}{3}\)
Vậy: \(A=\dfrac{1}{3}\)
Ta có: \(x^2-2y^2=xy\)
\(\Leftrightarrow x^2-y^2-y^2-xy=0\)
\(\Leftrightarrow\left(x-y\right)\left(x+y\right)-y\left(x+y\right)=0\)
\(\Leftrightarrow\left(x+y\right)\left(x-2y\right)=0\)
Mà \(x+y\ne0\)
\(\Rightarrow x-2y=0\)
\(\Rightarrow x=2y\)
\(\Rightarrow P=\frac{2y-y}{2y+y}=\frac{y}{3y}=\frac{1}{3}\)
Từ đề bài \(\Rightarrow\)\(x^2-2y^2-xy=0\Leftrightarrow\left(x+y\right)\left(x-2y\right)=0\)
Mà \(x+y\ne0\Rightarrow x-2y=0\Rightarrow x=2y\)
\(\Rightarrow P=\frac{2y-y}{2y+y}=\frac{1}{3}\)
Vì \(x^2-2y^2=xy\)
\(\Leftrightarrow x^2-xy-y^2=0\)
\(\Leftrightarrow\left(x-y\right)^2-y\left(x+y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x+y\right)-y\left(x+y\right)=0\)
\(\Leftrightarrow\left(x+y\right)\left(x-2y\right)=0\)
Theo đề bài thì có :
\(x+y\ne0\)
\(\Rightarrow x-2y=0\)
\(\Leftrightarrow x=2y\)
Từ đó ta lại có :
\(P=\frac{2y-y}{2y+y}=\frac{y}{3y}=\frac{1}{3}\)
Vậy .......