Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(cot^2a=\left(\dfrac{a^2-b^2}{2ab}\right)^2\Leftrightarrow\dfrac{cos^2a}{sin^2a}=\dfrac{a^4+b^4-2a^2b^2}{4a^2b^2}\)
\(\Leftrightarrow\dfrac{cos^2a}{sin^2a}+1=\dfrac{a^4+b^4-2a^2b^2}{4a^2b^2}+1\)
\(\Leftrightarrow\dfrac{1}{sin^2a}=\dfrac{a^4+b^4+2a^2b^2}{4a^2b^2}\)
\(\Leftrightarrow sin^2a=\dfrac{4a^2b^2}{a^4+b^4+2a^2b^2}\)
\(\Leftrightarrow cos^2a=1-sin^2a=1-\dfrac{4a^2b^2}{a^4+b^4+2a^2b^2}=\dfrac{a^4+b^4-2a^2b^2}{a^4+b^4+2a^2b^2}\)
\(\Leftrightarrow cos^2a=\left(\dfrac{a^2-b^2}{a^2+b^2}\right)^2\)
\(\Leftrightarrow cosa=\dfrac{a^2-b^2}{a^2+b^2}\)
Nhìn sự khác nhau giữa dòng 2 và dòng 3 và tự suy luận đi em, rất đơn giản đúng ko?
\(\dfrac{\left(sina+cosa\right)^2-\left(sina-cosa\right)^2}{sina.cosa}=4\\ VT=\dfrac{sin^2a+2sinacosa+cos^2a-sin^2a+2sinacosa-cos^2a}{sinacosa}\\ =\dfrac{4sinacosa}{sinacosa}=4=VP\)
a: \(S=cos^2a\left(1+tan^2a\right)=cos^2a\cdot\dfrac{1}{cos^2a}=1\)
b: \(VP=\dfrac{1+sin2a-1+sin2a}{\dfrac{1}{2}\cdot sin2a}=\dfrac{2\cdot sin2a}{\dfrac{1}{2}\cdot sin2a}=4=VT\)
\(A=\dfrac{\dfrac{3sina}{cosa}-\dfrac{5cosa}{cosa}}{\dfrac{5sina}{cosa}+\dfrac{8cosa}{cosa}}=\dfrac{3tana-5}{5tana+8}=\dfrac{3.\left(\dfrac{5}{7}\right)-5}{5.\left(\dfrac{5}{7}\right)+8}=...\)
sin a=3/5
=>cos a=4/5
tan a=3/5:4/5=3/4; cot a=1:3/4=4/3
M=(4/3+3/4):(4/3-3/4)=25/7
Lời giải:
$\sin a+\cos a=1$
$\sin ^2a+\cos ^2a=1$
$\Rightarrow 2\sin a\cos a=(\sin a+\cos a)^2-(\sin ^2a+\cos ^2a)=1^2-1=0$
$\Rightarrow \sin a\cos a=0$
$\Rightarrow \sin a=0$ hoặc $\cos a=0$
Nếu $\sin a=0$ hoặc $\cos a=0$
Mà vì $a$ là góc nhọn nên $\sin a, \cos a< 1$ nên không tìm được góc $a$ thỏa mãn.
Đề sai rồi bạn