K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2016

a) Xét tam giác OAD và tam giác OAC có

OA=OB ( gt )

OC=OD ( gt )

góc O : góc chung

do đó tam giác OAD = tam giác OAC ( c.g.c )

suy ra AD=BC ( 2 cạnh t/ứ )

b) Có góc OAD + góc CAE = 180 độ ( 2 góc kề bù )

góc OBC + góc EBD = 180 độ ( 2 góc kề bù )

mà góc OAD = góc OBC ( 2 góc t/ứ của tam giác OBC = tam giác OAD )

nên góc CAE = góc EBD

lại có AC=BD ( gt )

góc C = góc D ( 2 góc t/ứ của tam giác OBC= tam giác OAD )

do đó tam giác AEC = tam giác BED ( g.c.g )

19 tháng 1 2022

a. Ta có: OD = OB + BD; OC = OA + AC.

Mà OA = OB (gt); BD = AC (gt).

=> OD = OC.

Xét tam giác AOD và tam giác BOC có:

+ OA = OB (gt).

\(\widehat{O}\) chung.

+ OD = OC (cmt).

=> Tam giác AOD = Tam giác BOC (c - g - c).

=> AD = BC (Cặp cạnh tương ứng).

b. Tam giác AOD = Tam giác BOC (c - g - c).

=> \(\widehat{OAD}=\widehat{OBC}\) (2 góc tương ứng).

Mà \(\widehat{OAD}+\widehat{DAC}=180^o;\widehat{OBC}+\widehat{CBD}=180^o.\)

=>  \(\widehat{DAC}=\widehat{CBD}.\) 

hay \(\widehat{EAC}=\widehat{EBD}.\)

c) Tam giác AOD = Tam giác BOC (cmt).

=> \(\widehat{ODA}=\widehat{OCB}\) (2 góc tương ứng).

Xét tam giác EBD và tam giác EAC:

\(\widehat{BDE}=\widehat{ACE}\left(\text{​​}\widehat{ODA}=\widehat{OCB}\right).\) (cmt).

+ BD = AC (gt).

\(\widehat{EBD}=\widehat{EAC}\left(cmt\right).\)

=> Tam giác EBD = Tam giác EAC (g - c - g).

=> BE = AE (2 cạnh tương ứng).

Xét tam giác OBE và tam giác OAE:

+ OB = OA (gt).

+ OE chung.

+ BE = AE (cmt).

=> Tam giác OBE = Tam giác OAE (c - c - c).

=> \(\widehat{BOE}=\widehat{AOE}\) (2 góc tương ứng).

=> OE  là phân giác của \(\widehat{xOy}\left(đpcm\right).\)

a: Xét ΔOAD và ΔOBC có

OA=OB

\(\widehat{AOD}\) chung

OD=OC

Do đó: ΔOAD=ΔOBC

Suy ra: AD=BC

b: Xét ΔBDC và ΔACD có

BD=AC

\(\widehat{BDC}=\widehat{ACD}\)

DC chung

Do đó: ΔBDC=ΔACD

Suy ra: \(\widehat{EAC}=\widehat{EBD}\)

Xét ΔEAC và ΔEBD có 

\(\widehat{EAC}=\widehat{EBD}\)

AC=BD

\(\widehat{ECA}=\widehat{EDB}\)

Do đó: ΔEAC=ΔEBD

c: Xét ΔOEC và ΔOED có

OE chung

EC=ED

OC=OD

Do đó: ΔOEC=ΔOED

Suy ra: \(\widehat{COE}=\widehat{DOE}\)

hay OE là tia phân giác của góc xOy

22 tháng 12 2021

Hình vẽ trên òn đây là bài làm: a) Ta có: OC=OA+AC OD=OB+BD Mà OA=OB và AC=BD (gt) =>OC=OD Xét Δ OAD và Δ OBC có: OA=OB (gt) ˆ O góc chung

22 tháng 12 2021

a: Xét ΔOAD và ΔOBC có

OA=OB

\(\widehat{O}\) chung

OD=OC

Do đó: ΔOAD=ΔOBC

Suy ra: AD=BC

28 tháng 12 2023

a:

Ta có: OC=OA+AC

OD=OB+BD

mà OA=OB và AC=BD

nên OC=OD

Xét ΔOAD và ΔOBC có

OA=OB

\(\widehat{AOD}\) chung

OD=OB

Do đó: ΔOAD=ΔOBC

b: ta có: ΔOAD=ΔOBC

=>\(\widehat{OAD}=\widehat{OBC};\widehat{ODA}=\widehat{OCB}\)

Ta có: \(\widehat{OAD}+\widehat{DAC}=180^0\)(hai góc kề bù)

\(\widehat{OBC}+\widehat{DBC}=180^0\)(hai góc kề bù)

mà \(\widehat{OAD}=\widehat{OBC}\)

nên \(\widehat{DAC}=\widehat{DBC}\)

Xét ΔEAC và ΔEBD có

\(\widehat{EAC}=\widehat{EBD}\)

AC=BD

\(\widehat{ECA}=\widehat{EDB}\)

Do đó: ΔEAC=ΔEBD

c: Ta có: ΔEAC=ΔEBD

=>EC=ED

Xét ΔOEC và ΔOED có

OE chung

EC=ED

OC=OD

Do đó: ΔOEC=ΔOED

=>\(\widehat{COE}=\widehat{DOE}\)

=>\(\widehat{xOE}=\widehat{yOE}\)

=>OE là phân giác của góc xOy