K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2022

a: Xét ΔOAD và ΔOBC có

OA=OB

góc O chung

OD=OC

Do đó: ΔOAD=ΔOBC

=>AD=BC

b: Xét ΔEAC và ΔEBD có

góc EAC=góc EBD

AC=BD

góc ECA=góc EDB

Do đó: ΔEAC=ΔEBD

12 tháng 1 2021
Mn giải giúp em với ạ
19 tháng 1 2022

a. Ta có: OD = OB + BD; OC = OA + AC.

Mà OA = OB (gt); BD = AC (gt).

=> OD = OC.

Xét tam giác AOD và tam giác BOC có:

+ OA = OB (gt).

\(\widehat{O}\) chung.

+ OD = OC (cmt).

=> Tam giác AOD = Tam giác BOC (c - g - c).

=> AD = BC (Cặp cạnh tương ứng).

b. Tam giác AOD = Tam giác BOC (c - g - c).

=> \(\widehat{OAD}=\widehat{OBC}\) (2 góc tương ứng).

Mà \(\widehat{OAD}+\widehat{DAC}=180^o;\widehat{OBC}+\widehat{CBD}=180^o.\)

=>  \(\widehat{DAC}=\widehat{CBD}.\) 

hay \(\widehat{EAC}=\widehat{EBD}.\)

c) Tam giác AOD = Tam giác BOC (cmt).

=> \(\widehat{ODA}=\widehat{OCB}\) (2 góc tương ứng).

Xét tam giác EBD và tam giác EAC:

\(\widehat{BDE}=\widehat{ACE}\left(\text{​​}\widehat{ODA}=\widehat{OCB}\right).\) (cmt).

+ BD = AC (gt).

\(\widehat{EBD}=\widehat{EAC}\left(cmt\right).\)

=> Tam giác EBD = Tam giác EAC (g - c - g).

=> BE = AE (2 cạnh tương ứng).

Xét tam giác OBE và tam giác OAE:

+ OB = OA (gt).

+ OE chung.

+ BE = AE (cmt).

=> Tam giác OBE = Tam giác OAE (c - c - c).

=> \(\widehat{BOE}=\widehat{AOE}\) (2 góc tương ứng).

=> OE  là phân giác của \(\widehat{xOy}\left(đpcm\right).\)

22 tháng 12 2021

Hình vẽ trên òn đây là bài làm: a) Ta có: OC=OA+AC OD=OB+BD Mà OA=OB và AC=BD (gt) =>OC=OD Xét Δ OAD và Δ OBC có: OA=OB (gt) ˆ O góc chung

22 tháng 12 2021

a: Xét ΔOAD và ΔOBC có

OA=OB

\(\widehat{O}\) chung

OD=OC

Do đó: ΔOAD=ΔOBC

Suy ra: AD=BC

28 tháng 12 2023

a:

Ta có: OC=OA+AC

OD=OB+BD

mà OA=OB và AC=BD

nên OC=OD

Xét ΔOAD và ΔOBC có

OA=OB

\(\widehat{AOD}\) chung

OD=OB

Do đó: ΔOAD=ΔOBC

b: ta có: ΔOAD=ΔOBC

=>\(\widehat{OAD}=\widehat{OBC};\widehat{ODA}=\widehat{OCB}\)

Ta có: \(\widehat{OAD}+\widehat{DAC}=180^0\)(hai góc kề bù)

\(\widehat{OBC}+\widehat{DBC}=180^0\)(hai góc kề bù)

mà \(\widehat{OAD}=\widehat{OBC}\)

nên \(\widehat{DAC}=\widehat{DBC}\)

Xét ΔEAC và ΔEBD có

\(\widehat{EAC}=\widehat{EBD}\)

AC=BD

\(\widehat{ECA}=\widehat{EDB}\)

Do đó: ΔEAC=ΔEBD

c: Ta có: ΔEAC=ΔEBD

=>EC=ED

Xét ΔOEC và ΔOED có

OE chung

EC=ED

OC=OD

Do đó: ΔOEC=ΔOED

=>\(\widehat{COE}=\widehat{DOE}\)

=>\(\widehat{xOE}=\widehat{yOE}\)

=>OE là phân giác của góc xOy

19 tháng 12 2022

loading...

a) xét ΔOCB và ΔODA, ta có :

OA = OB (giả thiết)

\(\widehat{O}\) là góc chung

AC = BD (giả thiết)

⇒ ΔOCB = ΔODA (c.g.c)

⇒ AC = BD (2 cạnh tương ứng)

b) xét ΔEAC và ΔEBD, ta có : 

AD = BC (câu a)

\(\widehat{AEC}=\widehat{BED}\) (vì là 2 góc đối đỉnh) 

AC = BD (giả thiết)

⇒ ΔEAC = ΔEBD (C.G.C)

c) xét ΔOAE và ΔOBE, ta có :

OA = OB (giả thiết)

AE = BE [vì ΔEAC = ΔEBD (2 cạnh tương ứng)]

OE là cạnh chung

⇒ ΔOAE = ΔOBE (c.c.c)

⇒ \(\widehat{AOE}=\widehat{BOE}\) (2 góc tương ứng)

a: Xét ΔOAD và ΔOBC có

OA=OB

\(\widehat{AOD}\) chung

OD=OC

Do đó: ΔOAD=ΔOBC

Suy ra: AD=BC

b: Xét ΔBDC và ΔACD có

BD=AC

\(\widehat{BDC}=\widehat{ACD}\)

DC chung

Do đó: ΔBDC=ΔACD

Suy ra: \(\widehat{EAC}=\widehat{EBD}\)

Xét ΔEAC và ΔEBD có 

\(\widehat{EAC}=\widehat{EBD}\)

AC=BD

\(\widehat{ECA}=\widehat{EDB}\)

Do đó: ΔEAC=ΔEBD

c: Xét ΔOEC và ΔOED có

OE chung

EC=ED

OC=OD

Do đó: ΔOEC=ΔOED

Suy ra: \(\widehat{COE}=\widehat{DOE}\)

hay OE là tia phân giác của góc xOy

a: Xét ΔOAD và ΔOBC có 

OA=OB

\(\widehat{O}\) chung

OD=OC

Do đó: ΔOAD=ΔOBC

Suy ra: AD=BC

b: Xét ΔBDC và ΔACD có 

BD=AC

\(\widehat{BDC}=\widehat{ACD}\)

CD chung

Do đó: ΔBDC=ΔACD

Suy ra: \(\widehat{EBD}=\widehat{EAC}\)

Xét ΔEBD và ΔEAC có 

\(\widehat{EBD}=\widehat{EAC}\)

BD=AC

\(\widehat{BED}=\widehat{AEC}\)

Do đó: ΔEBD=ΔEAC