Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét : \(\widehat{BOC}+\widehat{DOC}=\widehat{DOB}\)
\(\widehat{AOD}+\widehat{DOC}=\widehat{AOC}\)
Mà \(\widehat{DOC}=\widehat{AOC}\)
Vì góc DOB và góc AOC là hai góc vuông nên
\(\widehat{AOD}=\widehat{BOC}=90^0\)
Ta có: góc AOC= góc BOD (=90độ) <=> góc AOD +góc DOC = góc DOC + góc COB <=> góc AOD = góc BOC
OM là phân giác của góc COD => góc DOM = góc COM
=> góc AOD + góc DOM = góc BOC + góc COM <=> góc AOM = góc BOM
Và vì OM là phân giác COD nên OM nằm giữa OA và OB
=> OM là phân giác góc AOB
a) DOA^ + DOC^ = AOC^
DOA^ = AOC^ - DOC^ = 90o - DOC^
BOC^ + DOC^ = BOD^
BOC^ = BOD^ - DOC^ = 90o - DOC^
=> DOA^ = BOC^
b) MOD^ = DOA^ + DOM^ = DOA^ + DOC^/2
MOB^ = BOC^ + COM^ = BOC^ + DOC^/2
Mà DOA^ = BOC^ (cmt)
=> MOD^ = MOB^ (1)
Ta có: OD , OC nằm trong AOB^
=> DOC^ nằm trong AOB^
OM là tia phân giác của DOC^
=> OM nằm trong góc AOB^ (2)
Từ (1) và (2) => OM là tia phân giác của AOB^
a) Ta có : \(OC\perp OA\Rightarrow\widehat{AOC}=90^O\)
\(OD\perp OB\Rightarrow\widehat{BOD}=90^O\)
Các tia OC , OD nằm trong \(\widehat{AOB}\)nên :
\(\widehat{AOD}\)\(=\widehat{AOB}\)\(-\widehat{BOD}\)\(=\widehat{AOB}\)\(-90^O\)
\(\widehat{BOC}=\widehat{AOB}-\widehat{AOC}=\widehat{AOB}-90^O\)
\(\Rightarrow\widehat{AOB}=\widehat{BOC}\)
b) Vì \(\widehat{AOC}< \widehat{AOB}\)( góc vuông nhỏ hơn góc tù )
=> OC nằm giữa hai tia OA và OB.
Vì \(\widehat{BOD}< \widehat{AOB}\)( góc vuông nhỏ hơn góc tù )
=> OD nằm giữa hai tia OA và OB
=> OC và OD nằm giữa hai tia OA và OB
=> Phân giác OM của \(\widehat{COD}\)nằm giữa hai tia OA và OB. ( 1)
Lại có : \(\widehat{MOC}=\widehat{MOD}\)
Theo chứng minh trên ta có : \(\widehat{BOC}=\widehat{AOD}\Rightarrow\widehat{MOC}+\widehat{BOC}=\widehat{MOD}+\widehat{AOD}hay\widehat{MCB}=\widehat{MOA}\)( 2 )
Từ (1) và (2) => OM là tia phân giác của \(\widehat{AOB}\)
# Aeri #
Ta có: OC⊥OAOC⊥OA nên ˆAOC=900AOC^=900
OD⊥OBOD⊥OB nên ˆBOD=900BOD^=900 các tia OC, OD ở trong góc AOB nên:
ˆAOD=ˆAOB−ˆBOD=ˆAOB−900AOD^=AOB^−BOD^=AOB^−900
ˆBOC=ˆAOB−ˆAOC=ˆAOB−900BOC^=AOB^−AOC^=AOB^−900
⇒ˆAOD=ˆBOC⇒AOD^=BOC^
b.
Vì ˆAOC<ˆAOBAOC^<AOB^ (góc vuông nhỏ hơn góc tù)
⇒OC⇒OC nằm giữa hai tia OA và OB.
ˆBOD<ˆAOBBOD^<AOB^ (góc vuông nhỏ hơn góc tù)
⇒OD⇒OD nằm giữa hai tia OA và OB
⇒OC⇒OC và OD nằm giữa hai tia OA và OD
⇒⇒ Phân giác OM của góc ˆCODCOD^ nằm giữa hai tia OA và OB (*)
Mặt khác: Do OM là phân giác của góc ˆCODCOD^ nên ˆMOC=ˆMODMOC^=MOD^
Theo chứng minh trên, ta có:
ˆBOC=ˆAOD⇒ˆMOC+ˆBOC=ˆMOD+ˆAODBOC^=AOD^⇒MOC^+BOC^=MOD^+AOD^ hay ˆMCB=ˆMOAMCB^=MOA^ (**)
Từ (*) và (**) ⇒OM⇒OM là tia phân giác góc AOB.
a) AOD+ COD= AOC => AOD= AOC-COD =90o- COD
BOC +COD = BOD => BOC = BOD- COD= 90o - COD
=> AOD = BOC
b)Ta có: OM nằm trong góc AOB (1)
O1+ O2= AOM; O4 + O3= BOM
Mà O1= O4; O2= O3
=> AOM = BOM (2)
Từ (1) và (2) => OM là tia phân giác của AOB
qúa đúng