Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác AMD và tam giác AEN:
Góc A chung.
AM = AE (gt).
AD = AN (gt).
=> Tam giác AMD = Tam giác AEN (c - g - c).
=> MD = EN (2 cạnh tương ứng).
Ta có: \(\widehat{AMD}+\widehat{NMI}=180^o;\widehat{AEN}+\widehat{DEI}=180^o.\)
Mà \(\widehat{AMD}=\widehat{AEN}\) (Tam giác AMD = Tam giác AEN).
=> \(\widehat{NMI}=\widehat{DEI.}\)
Ta có: MN = AN = AM; ED = AD - AE.
Mà AM = AE, AN = AD (gt).
=> MN = ED.
Xét tam giác INM và tam giác IDE:
MN = ED (cmt).
\(\widehat{NMI}=\widehat{DEI}\left(cmt\right).\)
\(\widehat{MNI}=\widehat{EDI}\) (Tam giác AMD = Tam giác AEN).
=> Tam giác INM = Tam giác IDE (g - c - g).
Xét tam giác NAI và tam giác DAI:
AI chung.
AN = AD (gt).
NI = DI (Tam giác INM = Tam giác IDE).
=> Tam giác NAI = Tam giác DAI (c - c - c).
=> \(\widehat{NAI}=\widehat{DAI}\) (2 góc tương ứng).
=> AI là phân giác góc xAy.
Xét tam giác AND: AN = AD (gt).
=> Tam giác AND cân tại A.
Mà AI là phân giác (cmt).
=> AI là đường cao (Tính chất tam giác cân).
=> AI vuông góc với NB
a: Xét ΔOMF và ΔOEN có
OM=OE
\(\widehat{O}\) chung
OF=ON
Do đó: ΔOMF=ΔOEN
Suy ra: MF=EN
Bạn kham khảo link này nhé.
Câu hỏi của Cô nàng cá tính - Toán lớp 7 | Học trực tuyến