Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi tia đói của Ax là Ax'
a)
Ta có
\(\widehat{xBz}=\widehat{xAy}=50^0\) ( Hai góc đồng vj ; Bz // Ay )
b)
\(\widehat{BAy}=\widehat{x'Bz}\)( đồng vị )
Mặt khác
\(\widehat{A1}=\frac{1}{2}.\widehat{BAy}\)
\(\widehat{B1}=\frac{1}{2}.\widehat{x'Bz}\)
\(\Rightarrow\widehat{A1}=\widehat{B1}\)
MÀ \(\widehat{A1};\widehat{B1}\) đồng vị
=> Am//Bn
a) vì Bz//Ay → góc xBz = góc xAy ( hai góc đồng vị)
Mà góc xAy = 50 ( gt) → xBz = 50
b) Vì AM là tia phân giác của góc xAy → xAM = 1/2 xAy →xAM = 25 (1)
Vì BN là tia pg của góc xBz → góc xBN = 1/2 xBz → xBN = 25 (2)
Từ (1) và (2) suy ra xAM = xBN =25
Mà chúng ở vị trí đồng vị → AM // BN ( dấu hiệu nhận biết hai đg thẳng song song)
(hình tự vẽ)
a) ta có: Ax // Bz
=> xAy^ = xBz^ = 50o (đồng vị)
b) ta có: mAx^ = xAy^ /2 = 50o/2 = 25o
nBx^ = xBz^ /2 = 50o/2 = 25o
=> mAx^ = nBx^
mà mAx^ đồng vị với nBx^
=> Am // Bn
Ta có Góc xAy Với góc ABz là hai góc đồng vị
mà xAy=40độ và theo tính chất nhận biết của hai đường thẳng songsong tả đc:
ABy=40độ
b/ta có xAM=MAy=1/2xAy=20 độ
ABN=NBz=1/2ABz=20độ
=>MAy=ABN=20độ
mà hai góc này ở vị chí sole trong của hai đường thẳng AM và BN do AB cắt
=>AMsongsong Với BN
Tự vẽ hình
Ta có Góc xAy Với gócABz là hai góc đồng vị
mà xAy=40độ và theo tính chất nhận biết của hai dường thẳng songsong ta đc:
ABy=40độ
2/ta có xAM=MAy=1/2xAy=20 độ
ABN=NBz=1/2ABz=20độ
=>MAy=ABN=20độ
mà hai góc này ở vị chí sole trong của hai đường thẳng AM và BN do AB cắt
=>AMsongsong Với BN
k giùm nha! ^-^
b) Am là tia phân giác của xAy (1)
Bn là tia phân giác của xBz (2)
Mà: góc xAy= góc xBz( cm ý a) (3)
Từ 1 ; 2 và 3
=> góc xAm= góc mAy= góc xBn= góc nBz= góc \(\frac{xAy}{2}\) = góc \(\frac{xBz}{2}\)
Từ góc xAm = góc xBn ( hai góc ở vị trí đồng vị)=> Am//Bn