K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2017

Đoạn thẳng f: Đoạn thẳng [B, C] Đoạn thẳng g: Đoạn thẳng [A, B] Đoạn thẳng h: Đoạn thẳng [A, C] Đoạn thẳng k: Đoạn thẳng [B, D] Đoạn thẳng l: Đoạn thẳng [C, E] Đoạn thẳng m: Đoạn thẳng [D, A] Đoạn thẳng n: Đoạn thẳng [E, A] Đoạn thẳng t: Đoạn thẳng [I, K] Đoạn thẳng a: Đoạn thẳng [E, K] Đoạn thẳng b: Đoạn thẳng [A, H] Đoạn thẳng e: Đoạn thẳng [D, I] Đoạn thẳng f_1: Đoạn thẳng [D, E] Đoạn thẳng g_1: Đoạn thẳng [B, J] Đoạn thẳng h_1: Đoạn thẳng [C, J] Đoạn thẳng j_1: Đoạn thẳng [M, J] B = (-14.59, -7.49) B = (-14.59, -7.49) B = (-14.59, -7.49) C = (5.39, -7.29) C = (5.39, -7.29) C = (5.39, -7.29) A = (-7.4, 13.59) A = (-7.4, 13.59) A = (-7.4, 13.59) Điểm D: Giao điểm đường của c, i Điểm D: Giao điểm đường của c, i Điểm D: Giao điểm đường của c, i Điểm E: Giao điểm đường của d, j_2 Điểm E: Giao điểm đường của d, j_2 Điểm E: Giao điểm đường của d, j_2 Điểm I: Giao điểm đường của p, q Điểm I: Giao điểm đường của p, q Điểm I: Giao điểm đường của p, q Điểm H: Giao điểm đường của p, r Điểm H: Giao điểm đường của p, r Điểm H: Giao điểm đường của p, r Điểm K: Giao điểm đường của p, s Điểm K: Giao điểm đường của p, s Điểm K: Giao điểm đường của p, s Điểm J: Điểm trên f_1 Điểm J: Điểm trên f_1 Điểm J: Điểm trên f_1 Điểm G: Trung điểm của D, E Điểm G: Trung điểm của D, E Điểm M: Giao điểm đường của i_1, f Điểm M: Giao điểm đường của i_1, f Điểm M: Giao điểm đường của i_1, f

a) Xét tam giác DBI và tam giác BAH có:

\(\widehat{DIB}=\widehat{BHA}=90^o\)

BD = AB (Tam giác ABD vuông cân tại B)

\(\widehat{DBI}=\widehat{BAH}\) (Cùng phụ với góc ABH)

Vậy nên \(\Delta DBI=\Delta BAH\)(Cạnh huyền góc nhọn)

\(\Rightarrow DI=BH.\)

Tương tự ta chứng minh được EK = CH.

b) Gọi J là trung điểm DE. Do DI và EK cùng vuông góc bới BC nên chúng song song nhau.

Từ J kẻ, JM // DI // EK. Khi đó \(JM\perp BC.\)

Xét hình thang DIKE ta thấy ngay JM chính là đường trung bình của hình thang. Vậy M là trung điểm IK.

Lại có theo câu a, \(\Delta DBI=\Delta BAH\Rightarrow IB=AH\), tương tự KC = AH.

Vậy thì MB = MC hay JM là đường trung tuyến tam giác JBC.

Vậy thì \(JM=\frac{DI+EK}{2}=\frac{BH+CH}{2}=\frac{BC}{2}\)

Xét tam giác JBC có đường trung tuyến bằng một nửa cạnh huyền nên nó là tam giác vuông. Lại có  JM đồng thời là đường cao nên tam giác JBC vuông cân tại J. Do BC cố định nên J cố định.

Vậy DE luôn đi qua một điểm cố đỉnh, là đỉnh J nằm cùng phía A so với BC và thỏa mãn tam giác JBC vuông cân tại J. 

13 tháng 9

vì△ABC là △vuông cân 

⇒ góc A = 90 độ

 B=C=45 độ

AB=AC

Ta có DHE= 90 độ 

⇒ DHEA là hbh

⇒DH song song AE , HE song song DA

Xét △DAE có

M là trung điểm DE

⇒AM=1/2DE

Xét △HDE có 

M là trung điểm DE 

⇒HM=1/2DE( trung tuyến △vuông)

⇒MA=MH

⇒M thuộc trung trực AH

mà △ABC cố định

⇒M cố định