Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tự vẽ hình
a, Xét tam giác OKM và tam giác OHM có
góc OKN= góc OHM=90độ (vì NK vuông góc với OM;MHvuông góc với ON)
OM=ON(gt)
chung gócO
Suy ra : Tam giác OKM= Tam giác OHM
Suy ra:ĐPCM
b,Theo câu a tam giác OKM= Tam giác OHM
Suy ra : OH=OK(Hai cạnh tương ứng)
Suy ra :ĐPCM
Hình bạn tự vẽ nhé:
a, Xét tam giác OKN và tam giác OHM ta có:
góc K= góc H(=90 độ)
góc O chung, OM=ON(gt)
<=> tam giác OKN= tam giác OHM
b, theo CMT có 2 tam giác = nhau
<=> OH=OK<hai cạnh tương ứng>
c, ta có OM=ON mà OH=OK(cmt)<=> HN=KM
xét tam giác HIN và tam giác MKI ta có:
góc HIN= KIM(đối đỉnh)
góc H = góc K (= 90 độ) ; HN=KM (chứng minh trên)
<=> tam giác HIN= tam giác MKI
<=> IK=IN <hai cạnh tương ứng của 2 tam giác = nhau>
d, theo trên ta có 2 tam giác trên bằng nhau nên ta có: MI=NI < 2 cạnh tương ứng>
~~~~~ chúc bạn lun lun họk giỏi ~~~@#
+ Xét tam giác vuông HMO có
^HOM=30 độ (Oz là phân giác ^xOy)
=> MH=OM/2 (trong tam giác vuông cạnh đối diện với góc 30 độ bằng nửa cạnh huyền)
+ Xét tam giác vuông KNO chứng minh tương tự ta cùng có NK=ON/2
=> MH+NK=(OM+ON)/2 => OM+ON=2(MH+NK)
a: Xét ΔOCA vuông tại C và ΔODB vuông tại D có
OA=OB
góc O chung
=>ΔOCA=ΔODB
b: Xét ΔBDA vuông tại D và ΔACB vuông tại C có
BD=AC
BA chung
=>ΔBDA=ΔACB
=>góc IAB=góc IBA
=>ΔIAB cân tại I
c: IA=IB
IB>IC
=>IA>IC
b: Xét ΔOMA vuông tại A và ΔOMB vuông tại B có
OM chung
\(\widehat{AOM}=\widehat{BOM}\)
DO đó: ΔOMA=ΔOMB
Suy ra: OA=OB
hay ΔOAB cân tại O
c: Xét ΔOEF có
ON là đường cao
ON là đường phân giác
Do đó: ΔOEF cân tại O
Suy ra: OE=OF
Xét ΔOBA có
OE/OA=OF/OB
Do đó: EF//AB
1: Xét ΔOAM và ΔOBM có
OA=OB
OM chung
AM=BM
Do đó:ΔOAM=ΔOBM
2: Ta có: ΔOAM=ΔOBM
nên \(\widehat{OMA}=\widehat{OMB}\)
mà \(\widehat{OMA}+\widehat{OMB}=180^0\)
nên \(\widehat{OMA}=\widehat{OMB}=90^0\)
Xét ΔHMA vuông tại M và ΔHMB vuông tại M có
HM chung
AM=BM
Do đó: ΔHMA=ΔHMB
Suy ra: HA=HB
vẽ trên mt nên hình ko được đẹp ..
a, Xét \(\Delta OMN\perp N\)và \(\Delta OMP\perp P\)có :
\(\widehat{O_1}=\widehat{O_2}\)\(\left(gt\right)\)
\(OM\)cạnh chung
= > \(\Delta OMN=\Delta OMP\left(ch-gn\right)\)
b, Vì \(\Delta OMN=\Delta OMP\)( câu a, )
= > \(ON=OP\)( 2 cạnh tương ứng )
Xét \(\Delta ONP\)có :
\(ON=OP\left(cmt\right)\)
= > \(\Delta ONP\)là tam giác cân ( cân tại O )
a, Xét 2 tam giác vuông OMN và OMP có :
\(\widehat{O_1}=\widehat{O_2}\) ( gt )
OM cạnh chung
= > \(\Delta OMN=\Delta OMP\left(ch-gn\right)\)
b, Vì \(\Delta OMN=\Delta OMP\)( câu a,)
= > ON = OP
Xét \(\Delta ONP\)có :
\(ON=OP\left(cmt\right)\)
= > \(\Delta ONP\)là tam giác cân ( cân tại O )
a: Xét ΔOAM vuông tại A và ΔOBN vuông tại B có
OA=OB
\(\widehat{AOM}\) chung
Do đó: ΔOAM=ΔOBN
Suy ra OM=ON
b: Xét ΔBHM vuông tại B và ΔAHN vuông tại A có
BM=AN
\(\widehat{BHM}=\widehat{AHN}\)
Do đó: ΔBHM=ΔAHN
Suy ra: HN=HM
mà OM=ON
và IM=IN
nên O,H,I thẳng hàng
b) Xét ΔOMH vuông tại M và ΔONK vuông tại N có
OM=ON(gt)
\(\widehat{O}\) chung
Do đó: ΔOMH=ΔONK(cạnh góc vuông-góc nhọn kề)
Suy ra: OH=OK(hai cạnh tương ứng) và \(\widehat{H}=\widehat{K}\)(hai góc tương ứng)
Ta có: ON+NH=OH(N nằm giữa O và H)
OM+MK=OK(M nằm giữa O và K)
mà ON=OM(gt)
và OH=OK(cmt)
nên NH=MK
Xét ΔINH vuông tại N và ΔIMK vuông tại M có
NH=MK(cmt)
\(\widehat{H}=\widehat{K}\)(cmt)
Do đó: ΔINH=ΔIMK(cạnh góc vuông-góc nhọn kề)
Suy ra: IN=IM(hai cạnh tương ứng)
Xét ΔMIN có IN=IM(cmt)
nên ΔMIN cân tại I(Định nghĩa tam giác cân)
c) Ta có: ΔIMK vuông tại M(gt)
nên IK là cạnh huyền
Suy ra: IK là cạnh lớn nhất trong ΔIMK(Định lí)
hay IK>IM
mà IM=IN(cmt)
nên IK>IN