K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2020

x O y A B C D E I

GỌI I LÀ GIAO ĐIỂM CỦA OE VÀ AC

D) XÉT \(\Delta COI\)\(\Delta AOI\)

\(CO=AO\left(GT\right)\)

\(\widehat{COE}=\widehat{IOA}\left(GT\right)\)

\(OI\)LÀ CẠNH CHUNG

\(\Rightarrow\Delta COI=\Delta AOI\left(C-G-C\right)\)

\(\Rightarrow\widehat{CIO}=\widehat{AIO}\)HAI GÓC TƯƠNG ỨNG

\(\widehat{OIC}+\widehat{OIA}=180^o\left(KB\right)\)

THAY\(\widehat{OIC}+\widehat{OIC}=180^o\)

\(2\widehat{OIC}=180^o\)

\(\widehat{OIC}=180^o:2=90^o\)

nên\(AC\perp OE\)TẠI I

E) CHỨNG MINH TƯƠNG TỰ CÂU D SAU ĐÓ => SO LE TRONG BẰNG NHAU=> //

3 tháng 1 2020

E) GỌI M LÀ GIAO ĐIỂM CỦA OE VÀDB

VÌ OE LÀ PHÂN GIÁC CỦA GÓC O MÀ OE CŨNG THUỘC GÓC DEB

=> OE CŨNG LÀ TIA PHÂN GIÁC CỦA DEB

XÉT \(\Delta DEM\)VÀ \(\Delta MEB\)

\(DE=EB\left(\Delta EAB=\Delta ECD\right)\)

\(\widehat{DEM}=\widehat{MEB}\left(CMT\right)\)

EM LÀ CẠNH CHUNG 

\(\Rightarrow\Delta DEM=\Delta MEB\left(C-G-C\right)\)

\(\Rightarrow\widehat{DME}=\widehat{EMB}\left(HCTU\right)\)

\(\widehat{DME}+\widehat{EMB}=180^o\left(kb\right)\)

THAY\(\widehat{DME}+\widehat{DME}=180^o\)

\(2\widehat{DME}=180^o\)

\(\widehat{DME}=180^o:2=90^O\)

\(\Rightarrow\widehat{OIA}=\widehat{DME}=90^O\)

HAI GÓC NÀY Ở VỊ TRÍ ĐỒNG VỊ BẰNG NHAU

\(\Rightarrow AC//BD\)

2 tháng 1 2016

  a/xét OBC và ODA: 
-góc O chung 
-OD=OB(gt) 
-OA=OC(gt) => OBC=ODA =>AD=BC 
b/ từ a/ =>gADO = gOBC và gOAD = gOCB =>gBAD=gBCD (bù với 2 g = nhau) 
OA=OC và OD=OB => AB=CD 
-xét tam giác EAB và ECD: 
AB=CD 
gBAD=gBCD 
gADO=gOBC =>dpcm 
c/b/=>ED=EB 
xét OBE và ODE: ED=EB 
gB=gD 
OB=OD =>2 tg = nhau 
=>gBOE=gDOE =>OE là p/g 
d/gọi M:trung điểm BD 
xét tam giác OBM và ODM: OM chung 
gBOE=gDOE 
OB=OD => 2 tam giác = nhau 
=> BM=DM và gBMO=gDMO mà tổng = 180 =>.... 
e/cm tương tự d/=> OE là trung trực AC 
=>gOAC = gOBD (phụ với gBOE) => AC//BD

3 tháng 1 2016

cậu ơi, chỉ có câu d thui>

15 tháng 1 2016

C,D thuộc tia Ox,Oy hay Oy

 

a: Xét ΔOAD và ΔOBC có 

OA=OB

\(\widehat{O}\) chung

OD=OC

Do đó: ΔOAD=ΔOBC

Suy ra: AD=BC

b: Ta có: ΔOAD=ΔOBC

nên \(\widehat{OAD}=\widehat{OBC}\)

\(\Leftrightarrow180^0-\widehat{OAD}=180^0-\widehat{OBC}\)

hay \(\widehat{EAB}=\widehat{ECD}\)

Xét ΔEAB và ΔECD có 

\(\widehat{EAB}=\widehat{ECD}\)

AB=CD

\(\widehat{EBA}=\widehat{EDC}\)

Do đó: ΔEAB=ΔECD

c: Ta có: ΔEAB=ΔECD

nên EB=ED

Xét ΔOEB và ΔOED có 

OE chung

EB=ED

OB=OD

Do đó: ΔOEB=ΔOED

Suy ra: \(\widehat{BOE}=\widehat{DOE}\)

hay OE là tia phân giác của góc xOy

29 tháng 12 2021

a: Xét ΔOAD và ΔOBC có

OA=OB

\(\widehat{O}\) chung

OD=OC

Do đó: ΔOAD=ΔOBC

Bài 44:

a: Xét ΔADB và ΔADC có

\(\widehat{ADB}=\widehat{ADC}\)

AD chung

\(\widehat{BAD}=\widehat{CAD}\)

Do đó:ΔADB=ΔADC

b: Xét ΔABC có \(\widehat{B}=\widehat{C}\)

nên ΔABC cân tại A

16 tháng 2 2022

Bài 43

a) ΔOAD và ΔOCB có:

      OA = OC (gt)

      Góc O chung

      OD = OB (gt)

⇒ ΔOAD = ΔOCB (c.g.c)

⇒ AD = BC (hai cạnh tương ứng).

b) Do ΔOAD = ΔOCB (chứng minh trên)

      Giải bài 43 trang 125 Toán 7 Tập 1 | Giải bài tập Toán 7

      OA = OC, OB = OD ⇒ OB – OA = OD – OC hay AB = CD.

Xét ΔAEB và ΔCED có:

      ∠B = ∠D

      AB = CD

      ∠A2 = ∠C2

⇒ΔAEB = ΔCED (g.c.g)

c) ΔAEB = ΔCED ⇒ EA = EC (hai cạnh tương ứng)

ΔOAE và ΔOCE có

      OA = OC

      EA = EC

      OE cạnh chung

⇒ ΔOAE = ΔOCE (c.c.c)

⇒ Giải bài 43 trang 125 Toán 7 Tập 1 | Giải bài tập Toán 7 (hai góc tương ứng)

Bài 44

a)

Giải bài 44 trang 125 Toán 7 Tập 1 | Giải bài tập Toán 7

Do đó ΔADB = ΔADC (g.c.g)

b) ΔADB = ΔADC ( câu a )

Suy ra AB = AC (hai cạnh tương ứng)

16 tháng 2 2022

cảm ơn 

21 tháng 9 2023

Tham khảo:

a) Xét \(\Delta OAD\) và \(\Delta OCB\), ta có :

OD = OB

\(\widehat{A}\) chung

OA = OC 

\(\Rightarrow \Delta OAD=\Delta OCB\) (c-g-c )

\( \Rightarrow AD = BC\)(2 cạnh tương ứng )

b) Vì \(\Delta OAD=\Delta OCB\) nên \(\widehat{OAD}=\widehat{OCB}; \widehat{D}=\widehat{B}\) ( 2 góc tương ứng)

Mà \(\widehat{OAD}+\widehat{BAD}=180^0\) ( 2 góc kề bù)

\(\widehat{OCB}+\widehat{BCD}=180^0\) ( 2 góc kề bù)

Do đó, \(\widehat{BAD}=\widehat{BCD}\)

Vì \(OA+AB=OB; OC+CD=OD\)

Mà \(OC = OA, OD = OB\)

\(\Rightarrow AB=CD\)

Xét \(\Delta EAB\) và \(\Delta ECD\), ta có:

\(\widehat {ABE} = \widehat {CDE}\)

\(AB = CD\)

\(\widehat {BAE} = \widehat {DCE}\)

\(\Rightarrow \Delta EAB=\Delta ECD\) (g-c-g)

c) Vì \(\Delta EAB=\Delta ECD\) nên EB = ED ( 2 cạnh tương ứng)

Xét \(\Delta OBE\) và \(\Delta ODE\), ta có :

 EB = ED

OB = OD

OE chung

\( \Rightarrow \Delta OBE=\Delta ODE \)  (c.c.c)

\( \Rightarrow \widehat{BOE}=\widehat{DOE}\) ( 2 góc tương ứng)

\( \Rightarrow \) OE là phân giác \(\widehat {xOy}\)

20 tháng 4 2017

Luyện tập về ba trường hợp bằng nhau của tam giác

20 tháng 4 2017

Giải bài 43 trang 125 Toán 7 Tập 1 | Giải bài tập Toán 7Giải bài 43 trang 125 Toán 7 Tập 1 | Giải bài tập Toán 7