Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có hình vẽ:
a/ Xét tam giác OAD và tam giác OCB có
-O : góc chung
-OA = OC
-OB = OD
=> tam giác OAD = tam giác OCB
b/ Xét tam giác ACD và tam giác CAB có
-AC: cạnh chung
-OA = OC
OB = OD
\(\Rightarrow\)AB = CD
-AD = CB (vì \(\Delta\)OAD=\(\Delta\)OCB)
Vậy tam giác ACD = tam giác CAB
a: Xét ΔOAD và ΔOCB có
OA=OC
\(\widehat{DOA}\) chung
OD=OB
Do đó: ΔOAD=ΔOCB
b: Ta có: ΔOAD=ΔOCB
nên \(\widehat{OAD}=\widehat{OCB}\)
\(\Leftrightarrow\widehat{BAD}=\widehat{DCB}\)
a: Xét ΔOAD và ΔOCB có
OA=OC
ˆOO^ chung
OD=OB
Do đó: ΔOAD=ΔOCB
Suy ra: AD=CB
a, xét tma giác OAD và tam giác OBC có: góc O chung
OA = ob (Gt)
OC = OD (gt)
=> tam giác OAD = tam giác OBC (c-g-c)
b, tam giác OAD = tam giác OBC (câu a)
=> AD = BC (đn) (1)
OA = OB (gt)
OC = OD (gt)
AC = OC - OA
BD = OD - OB
=> AC = BD
xét tam giác BCD và tam giác ACD có: CD chung
(1)
=> tam giác BCD = tam giác ACD (c-c-c)
=> góc CAD = góc CBD (Đn)
Ta có hình vẽ:
a/ Xét tam giác OAD và tam giác OBC có:
OA = OB (GT)
\(\widehat{O}\): góc chung
OC = OD (GT)
Vậy tam giác OAD = tam giác OBC (c.g.c)
b/ Ta có: tam giác OAD = tam giác OBC (câu a)
=> \(\widehat{OAD}\)=\(\widehat{OBC}\) (2 góc tương ứng)
Mà \(\widehat{OAD}\)+\(\widehat{DAC}\) = 1800 (kề bù)
và \(\widehat{OBC}\)+\(\widehat{CBD}\) = 1800 (kề bù)
=> \(\widehat{CAD}\)=\(\widehat{CBD}\)(đpcm)
a. Xét \(\Delta OAD\)và \(\Delta OBC\)
OA = OB (giả thiết)
góc O chung
OD = OC (giả thiết)
\(\Rightarrow\)\(\Delta\)OAD = \(\Delta\)OBC (c.g.c)
Vì tam giác OAD = OBC \(\Rightarrow\)góc OAD=OBC (2 góc tương ứng)
\(\Rightarrow\)Góc CAD=góc CBD.