K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2022

Ta có: \(A=\frac{2020}{2021}+\frac{2021}{2022}\)

\(\Rightarrow A=\frac{2021}{2021}-\frac{1}{2021}+\frac{2022}{2022}-\frac{1}{2022}\)

\(\Rightarrow A=1-\frac{1}{2021}+1-\frac{1}{2022}\)

\(\Rightarrow A=1+1-\frac{1}{2021}-\frac{1}{2022}\)

\(\Rightarrow A=2-\frac{1}{2021}-\frac{1}{2022}\)

\(\Rightarrow A=2-\frac{1}{2021\cdot2022}\)

\(B=\frac{2020+2021}{2021+2022}\)

\(\Rightarrow B=\frac{2021+2022}{2021+2022}-\frac{2}{2021+2022}\)

\(\Rightarrow B=1-\frac{2}{2021+2022}\)

\(\Rightarrow B=1-\frac{2}{4043}\)

Vậy ta sẽ so sánh:

\(1-\frac{1}{2021\cdot2022};\frac{2}{4043}\)

Vì \(2021\cdot2022>4043\)nên \(\frac{1}{2021\cdot2022}< \frac{2}{4043}\)vậy \(1-\frac{1}{2021\cdot2022}>\frac{2}{4043}\)

\(\Rightarrow\frac{2020}{2021}+\frac{2021}{2022}>\frac{2020+2021}{2021+2022}\)

\(\Rightarrow A>B\)

30 tháng 7 2020

Ta có : A = \(\frac{10^{2020}+1}{10^{2021}+1}\)

=> 10A = \(\frac{10^{2021}+10}{10^{2021}+1}=1+\frac{9}{10^{2021}+1}\)

Lại có : \(B=\frac{10^{2021}+1}{10^{2022}+1}\)

=> \(10B=\frac{10^{2022}+10}{10^{2022}+1}=1+\frac{9}{10^{2022}+1}\)

Vì \(\frac{9}{10^{2022}+1}< \frac{9}{10^{2021}+1}\)

=> \(1+\frac{9}{10^{2022}+1}< 1+\frac{9}{10^{2022}+1}\)

=> 10B < 10A

=> B < A

b) Ta có : \(\frac{2019}{2020+2021}< \frac{2019}{2020}\)

Lại có : \(\frac{2020}{2020+2021}< \frac{2020}{2021}\)

=> \(\frac{2019}{2020+2021}+\frac{2020}{2020+2021}< \frac{2019}{2020}+\frac{2020}{2021}\)

=> \(\frac{2019+2020}{2020+2021}< \frac{2019}{2020}+\frac{2020}{2021}\)

=> B < A

13 tháng 2 2022

sai rồi

25 tháng 7 2023

BẰNG NHAU

 

25 tháng 7 2023

A) <

B) >

👇

2020/2021<1

2021/2022<1

2022/2023<1

2023/2020=1+1/2020+1/2020+1/2020>1+1/2021+1/2022+1/2023

=>B>2020/2021+2021/2022+2022/2023+1/2021+1/2022+1/2023+1=4

Tham khảo:

loading...

6 tháng 8 2021

a)=<

b)=-1/6<1/12

16 tháng 5 2022

Ta có:

\(10A=\dfrac{10\left(10^{2020}+1\right)}{10^{2021}+1}=\dfrac{10^{2021}+10}{10^{2021}+1}=1+\dfrac{9}{10^{2021}+1}\)

\(10B=\dfrac{10\left(10^{2021}+1\right)}{10^{2022}+1}=\dfrac{10^{2022}+10}{10^{2022}+1}=1+\dfrac{9}{10^{2022}+1}\)

⇒ \(10A>10B\) ( vì \(\dfrac{9}{10^{2021}+1}>\dfrac{9}{10^{2022}+1}\) )

Suy ra:  \(A>B\)

26 tháng 9 2021

Ta có: \(B=2020.2021.2022=\left(2021-1\right).\left(2021+1\right).2021=\left(2021-1\right)^2.2021< 2021^2.2021=A\)

17 tháng 1 2022

\(\dfrac{2021}{2022}=\dfrac{2020}{2021}\)

17 tháng 1 2022

\(\dfrac{2021}{2022}\) và \(\dfrac{2020}{2021}\)

\(\dfrac{2021}{2022}=1-\dfrac{1}{2022}\)

\(\dfrac{2020}{2021}=1-\dfrac{1}{2021}\)

\(\text{Vì }\)\(\dfrac{1}{2022}>\dfrac{1}{2021}=>1-\dfrac{1}{2022}>1-\dfrac{1}{2021}=>\dfrac{2021}{2022}>\dfrac{2020}{2021}\)