Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 3:
a: A(x)=x^3+3x^2-4x-12
B(x)=x^3-3x^2+4x+18
A(x)+B(x)
=x^3+3x^2-4x-12+x^3-3x^2+4x+18
=2x^3+6
A(x)-B(x)
=x^3+3x^2-4x-12-x^3+3x^2-4x-18
=6x^2-8x-30
b: A(-2)=(-8)+3*4-4*(-2)-12
=-20+3*4+4*2=0
=>x=-2 là nghiệm của A(x)
B(-2)=(-8)-3*(-2)^2+4*(-2)+18=-10
=>x=-2 ko là nghiệm của B(x)
1) P= 3\(xyz^2.\left(\dfrac{-1}{4}y^2z\right).4xz\)
P= \(\left(3.(\dfrac{-1}{4}).4\right)\left(x.x\right).\left(y.y^2\right)\left(z^2.z.z\right)\)
P= -3\(x^2y^3z^4\)
Bậc của đơn thức P là 9
b) Thay \(x=1;y=\dfrac{-1}{2};z=-1\) ta có
P= -3.(-1)\(^2.\left(\dfrac{-1}{2}\right)^3.\left(-1\right)^4\) = -3.1.\(\dfrac{-1}{8}\).1 = \(\dfrac{3}{8}\)
Vậy thay \(x=1;y=\dfrac{-1}{2};z=-1\) vào biểu thức P bằng \(\dfrac{3}{8}\)
2) M+N = \(-2x^3y-xy+x^2-6\)
M+N = \([\)(-2)\(+\left(-1\right)+1+\left(-6\right)\)\(]\) \(.\left(x^3.x.x^2\right).\left(y.y\right)\)
M+N = \(-8x^6y^2\)
M-N = \(-3x^3y-5x^2-4xy+1\)
M-N = (\(-3-5-4+1\)).\(\left(x^3.x^2.x\right).\left(y.y\right)\)
M-N = \(-11x^6y^2\)
a) Ta có: \(A=x^6+5+xy-x-2x^2-x^5-xy-2\)
\(=x^6-x^5-2x^2-x+3\)
Bậc là 6
b) Thay x=-1 và y=2018 vào A, ta được:
\(A=\left(-1\right)^6-\left(-1\right)^5-2\cdot\left(-1\right)^2-\left(-1\right)+3\)
\(=1-\left(-1\right)-2\cdot1+1+3\)
\(=1+1-2+1+3\)
=4
a. A = \(5xy^2+xy-xy-\dfrac{1}{3}x^2y+2xy+x^2y+xy+6\)
=> A = \(5xy^2-\dfrac{1}{3}x^2y+x^2y+xy-xy+xy+2xy+6\)
=> A = \(5xy^2-\dfrac{2}{3}x^2y+3xy+6\)
=> Bậc của đa thức A là : 3
a,\(\Leftrightarrow2X^3Y^4Z^3\)
b,hệ số:\(2\)
biến:\(X^3Y^4Z^3\)
c,thay x=2,y=1,z=-1;ta có PT:
\(2.2^3.1^4.\left(-1\right)^3\)
\(\Leftrightarrow-16\)
a: \(A=x^3y^2\left(\dfrac{1}{2}-\dfrac{1}{2}\right)+xy\left(2-1\right)+y-1=xy+y-1\)
Bậc là 2
b: Thay x=0,1 và y=-2 vào A, ta được:
\(A=-2\cdot0.1+\left(-2\right)-1=-0.2-1-2=-3.2\)
= \(\left(\dfrac{-1}{2}xy^2z-\dfrac{2}{3}xy^2z+xy^2z\right)+\left(3x^2y^2-\dfrac{1}{3}x^2y^2\right)+2xy^2\)
= \(\dfrac{-1}{6}xy^2z+\dfrac{8}{3}x^2y^2+2xy^2\)
Thay x = -2, y = 1, z = 3 vào biểu thức, có:
\(\dfrac{-1}{6}.\left(-2\right).1^2.3+\dfrac{8}{3}.\left(-2\right)^2.1^2+2\left(-2\right).1^2\)
= 1 + \(\dfrac{32}{3}\) - 4
= \(\dfrac{23}{3}\)
Vậy GTBT trên là \(\dfrac{23}{3}\)tại x = -2, y = 1, z = 3
bạn có thể gõ latex đc ko
Cái biểu tượng nằm ở ngay góc trên cùng bên trái khung câu hỏi
Ta có :
\(p=n-m=x^2y^2.xy^2z^2=x^3y^4z^2-3\left(x^2y^4z^2\right)=x^3y^4z^2-3x^2y^4z^2\)
Thay x = z = -2 ; y = -1 ta được :
\(=-8.1.4-3.4.1.4=-32-48=-80\)