K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

B(3)=2*3^2-4*3+3=18-12+3=9

B(-1/2)=2*1/4-4*(-1/2)+3=1/2+3+2=1/2+5=11/2

26 tháng 4 2023

Cảm ơn nhe.^_^

8 tháng 4 2020

chị học nhanh vĩa 

dạy em học với

20 tháng 5 2022

a)\(P\left(x\right)=x^5+2x^4-9x^3-x\)

\(Q\left(x\right)=5x^4+9x^3+4x^2-14\)

b) Sửa  Tìm hệ số cao nhất và hệ số tự do của đa thức Q(x)

 hệ số cao nhất :9

 hệ số tự do  :- 14

c)\(M\left(x\right)=P\left(x\right)+Q\left(x\right)\)

\(\Leftrightarrow M\left(x\right)=x^5+2x^4-9x^3-x+5x^4+9x^3+4x^2-14\)

\(M\left(x\right)=x^5+6x^4-x-14\)

20 tháng 5 2022

d)\(M\left(2\right)=2^5+6.2^4-2-14=32-96-2-14=-80\)

\(M\left(-2\right)=\left(-2\right)^5+6.\left(-2\right)^4+2-14=-32-96+2-14=-140\)

\(M\left(\dfrac{1}{2}\right)=\left(\dfrac{1}{2}\right)^5+6.\left(\dfrac{1}{2}\right)^4-\dfrac{1}{2}-14=\dfrac{1}{32}+\dfrac{3}{8}-\dfrac{1}{2}-14=-\dfrac{475}{32}\)

HQ
Hà Quang Minh
Giáo viên
20 tháng 9 2023

Theo đề bài ta có \(M(x) = 2{x^4} - 5{x^3} + 7{x^2} + 3x\)

\(\begin{array}{l}M(x) + Q(x) = 6{x^5} - {x^4} + 3{x^2} - 2\\ \Rightarrow Q(x) = (6{x^5} - {x^4} + 3{x^2} - 2) - (2{x^4} - 5{x^3} + 7{x^2} + 3x)\\ \Rightarrow Q(x) = 6{x^5} - {x^4} + 3{x^2} - 2 - 2{x^4} + 5{x^3} - 7{x^2} - 3x\\Q(x) = 6{x^5} - 3{x^4} + 5{x^3} - 4{x^2} - 3x - 2\end{array}\)

Theo đề bài ta có :

\(\begin{array}{l}N(x) - M(x) =  - 4{x^4} - 2{x^3} + 6{x^2} + 7\\ \Rightarrow N(x) =  - 4{x^4} - 2{x^3} + 6{x^2} + 7 + 2{x^4} - 5{x^3} + 7{x^2} + 3x\\ \Rightarrow N(x) =  - 2{x^4} - 7{x^3} + 13{x^2} + 3x + 7\end{array}\) 

25 tháng 4 2021

 a) G(x) = 2x5-4x4-10x3+3x2-4x-8

      H(x) = x5-2x4-5x3+x2+7x-4

b) G(x)+H(x)=3x5-6x4-15x3+4x2+3x-12

    G(x)-H(x) =x5-2x4-5x3+2x2-11x-4

c) G(x) = 2H(x)

2x5-4x4-10x3+3x2-4x-8=2( x5-2x4-5x3+x2+7x-4)

2x5-4x4-10x3+3x2-4x-8-2( x5-2x4-5x3+x2+7x-4)=0

2x5-4x4-10x3+3x2-4x-8-2x5+4x4+10x3-2x2-14x+8=0

x2-18x=0

x(x-18)=0

x=0 hoặc x-18=0

                x=18

 

HQ
Hà Quang Minh
Giáo viên
20 tháng 9 2023

P(x)+Q(x)+R(x) = \(9{x^4} - 3{x^3} + 5x - 1 - 2{x^3} - 5{x^2} + 3x - 8 - 2{x^4} + 4{x^2} + 2x - 10\)

\(\begin{array}{l} = (9{x^4} - 2{x^4})+( - 3{x^3} - 2{x^3})+( - 5{x^2} + 4{x^2}) +( 5x + 3x + 2x)+( - 8 - 10 - 1)\\ = 7{x^4} - 5{x^3} - {x^2} + 10x - 19\end{array}\)

P(x)-Q(x)-R(x) = \(9{x^4} - 3{x^3} + 5x - 1 + 2{x^3} + 5{x^2} - 3x + 8 + 2{x^4} - 4{x^2} - 2x + 10\)

\(\begin{array}{l} = (9{x^4} + 2{x^4})+( - 3{x^3} + 2{x^3} )+ (5{x^2} - 4{x^2}) + (5x - 3x - 2x) + (10 - 1 + 8)\\ = 11{x^4} - {x^3} + {x^2} + 17\end{array}\)

3 tháng 8 2021

4,  Q = |x+\(\frac{1}{5}\) | -x +\(\frac{4}{7}\)

 xét x \(\ge\) \(-\frac{1}{5}\)

 Ta Có  Q = |x+\(\frac{1}{5}\) | -x + \(\frac{4}{7}\)  = x+\(\frac{1}{5}\) - x +\(\frac{4}{7}\)\(\frac{27}{35}\)   (1)

xét x \(< -\frac{1}{5}\)

Ta có Q = | x +\(\frac{1}{5}\) | - x + \(\frac{4}{7}\) = -x - \(\frac{1}{5}\) - x + \(\frac{4}{7}\) = -2x  + \(\frac{13}{35}\)

với x \(< -\frac{1}{5}\) 

=> -2x \(>\) \(\frac{2}{5}\) 

=> -2x + \(\frac{13}{35}\) \(>\frac{27}{35}\) (2)

Từ (1) và (2) => MinQ = \(\frac{27}{35}\) khi \(x\ge-\frac{1}{5}\)

5 ,  D = |x| + |8-x| 

D = |x| + |8-x| \(\ge\) |x+8-x|  = |8| = 8

Dấu ''='' xảy ra khi   x(8-x) \(\ge\) 0  <=> 0\(\le\)x\(\le\) 8 

Vậy MinD = 8 khi \(0\le x\le8\) 

6,L=  |x - 2012| + |2011 - x| 

L = |x-2012| + |2011-x| \(\ge\) | x-2012 + 2011 - x |  = |-1| = 1 

Dấu ''= '' xảy ra khi ( x-2012)(2011-x) \(\ge\) 0  

3 tháng 8 2021

làm nốt câu 6 nãy ấn nhầm 

<=> 2011\(\le\) x \(\le\) 2012

Vậy MinL = 1 khi \(2011\le x\le2012\) 

7 , E = | x- \(\frac{2006}{2007}\) | + |x-1| 

Ta có :

E = |x-\(\frac{2006}{2007}\) | + |1-x| 

E = | x - \(\frac{2006}{2007}\) | + |1-x| \(\ge\) | x - \(\frac{2006}{2007}\) + 1 - x |  = \(\frac{1}{2007}\) 

Dấu ''='' xảy ra khi (x- \(\frac{2006}{2007}\) ) ( 1-x ) \(\ge0\) <=>  \(\frac{2006}{2007}\le x\le1\) 

Vậy MinE = \(\frac{1}{2007}\) khi \(\frac{2006}{2007}\le x\le1\) 

8 ,F = | x -\(\frac{1}{4}\) | + | \(x-\frac{3}{4}\) | 

Ta có :

F  = | x - \(\frac{1}{4}\) | + | \(\frac{3}{4}\)   - x | 

F  = | x - \(\frac{1}{4}\) | + | \(\frac{3}{4}\) -x | \(\ge\) | x - \(\frac{1}{4}\) + \(\frac{3}{4}\) -x  |  = \(\frac{1}{2}\) 

Dấu ''='' xảy ra khi ( x-\(\frac{1}{4}\) ) ( \(\frac{3}{4}-x\) ) \(\ge\) 0    <=>  \(\frac{1}{4}\le x\le\frac{3}{4}\) 

Vậy MinF = \(\frac{1}{2}\) khi \(\frac{1}{4}\le x\le\frac{3}{4}\)