Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: xx' cắt yy' tại O
=> góc xOy = góc x'Oy' =45 độ ( đối đỉnh)
=> góc x'Oy' = 45 độ
mà góc xOy + góc x'Oy = 180 độ ( kề bù)
Thay số: 45 độ + góc x'Oy = 180 độ
góc x'Oy = 180 độ - 45 độ
góc x'Oy = 135 độ
mà góc x'Oy = góc xOy' = 135 độ ( đối đỉnh)
=> góc xOy' = 135 độ
Nhận thầy từ hình vẽ hai góc xOy và x'Oy' là hai góc đối đỉnh
Mà xOy = 90 độ => xOy = x'Oy' = 90 độ
Có hai góc xOy + xOy' = 180 độ (kề bù do đối đỉnh)
=> 90 độ + xOy' = 180 độ
=> xOy' = 90 độ
Thấy xOy' và x'Oy đối đỉnh mà xOy' = 90 độ
=> xOy' = x'Oy = 90 độ
a)
b)
- góc xOy=x'Oy'=90*(đối đỉnh)
- Vì góc xOy kề bù với yOx'
nên: xOy+yOx'=180*
hay:90*+yOx'=180*
=> yOx'=180*-90*
Vậy yOx'=90*
- yOx'=xOy'=90*(đối đỉnh)
^...^ ^_^
Giải
_ Ta có \(\widehat{xOy}=\widehat{x'Oy'}=40^0\)( đối đỉnh) => \(\widehat{xOm}=\widehat{mOy}=\widehat{y'On}=\widehat{nOx'}=\frac{40^0}{2}=20^0\)
_ \(\widehat{x'Oy}=\widehat{xOy'}=180^0-40^0=140^0\)
B1: \(\widehat{yOx'}=180^o-45^o=135^o\)(2 góc kề bù)
\(\widehat{x'Oy'}=45^o\)(đối đỉnh với góc xOy)
\(\widehat{xOy'}=135^o\)(đói đỉnh với góc yOx')
B2: Ta có: Ot và Ot' đối nhau => \(\widehat{tOt'}=180^o\)=>\(\widehat{tOz}=\frac{\widehat{tOt'}}{5}=\frac{180^o}{5}=36^o\)=> \(\widehat{t'Oz}=36^o\)(đối đỉnh với \(\widehat{tOz}\))
a) Các cặp góc kề bù
\(\widehat{xOy}\) và \(\widehat{yOx'}\)
\(\widehat{yOx'}\) và \(\widehat{x'Oy'}\)
\(\widehat{x'Oy'}\) và \(\widehat{xOy'}\)
\(\widehat{xOy'}\) và \(\widehat{xOy}\)
Các cặp góc đối:
\(\widehat{xOy}\) và \(\widehat{x'Oy'}\)
\(\widehat{x'Oy}\) và \(\widehat{y'Ox}\)
b) Do \(\widehat{xOy}\) kề bù với \(\widehat{xOy'}\)
\(\Rightarrow\widehat{xOy}+\widehat{xOy'}=180^o\)
\(\Rightarrow\widehat{xOy'}=180^o-70^o=110^o\)
Ta có :
`@)` `\hat{x'Oy'} = \hat{xOy} = 100^@` (hai góc đối đỉnh)
`@)` `\hat{xOy + \hat{xOy'} = 180^@`
hay `100 +` `\hat{xOy'} = 180^@`
`⇒\hat{xOy'} = 180^@ - 100^@ = 80^@`
`@)` `\hat{x'Oy} = \hat{xOy'} = 80^@` (hai góc đối đỉnh)