Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ Trên đường tròn tâm O:
là góc tạo bởi tiếp tuyến AD và dây AB
+ Trên đường tròn tâm O’:
là góc tạo bởi tiếp tuyến AC và dây AB
+ Trên đường tròn tâm O:
là góc tạo bởi tiếp tuyến AD và dây AB
+ Trên đường tròn tâm O’:
là góc tạo bởi tiếp tuyến AC và dây AB
Kiến thức áp dụng
Trong một đường tròn:
+ Số đo của góc nội tiếp bằng một nửa số đo của cung bị chắn.
+ Số đo của góc tạo bởi tiếp tuyến và dây cung bằng nửa số đo của cung bị chắn.
Ta có: (1)
( vì là góc tạo bởi một tiếp tuyến và một dây cung đi qua tiếp điểm A của (O')).
và (2)
góc nội tiếp của đường tròn (O') chắn cung
Từ (1), (2) suy ra
(3)
Chứng minh tương tự với đường tròn (O), ta có:
(4)
Hai tam giác ABD và ABC thỏa (3), (4) suy ra cặp góc thứ 3 của chúng bằng nhau, vậy =
AD là tiếp tuyến của (O)
⇒ \(\widehat{DAB}=\widehat{ACB}\) ( cùng chắn \(\stackrel\frown{AB}\) )
AC là tiếp tuyến của (O)
⇒ \(\widehat{CAB}=\widehat{ADB}\) ( cùng chắn \(\stackrel\frown{AB}\) )
⇒ △ CAB ∼ △ ADB ( g - g )
⇒ \(\dfrac{CB}{AB}=\dfrac{AB}{BD}\Rightarrow AB^2=BC.BD\)