Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc ABC=1/2*sđ cung AC=90 độ
góc ABD=1/2*180=90 độ
góc CBD=góc ABC+góc ABD=90+90=180 độ
=>C,B,D thẳng hàng
b: góc AFC=1/2*sđ cung AC=90 độ
=>CF vuông góc AD
góc AED=1/2*180=90 độ
=>DE vuông góc AC
góc CED=góc CFD=90 độ
=>CEFD nội tiếp
...........................................................................................................................................................................................................................................................................................................................................................................................................................................................GHJYTGJ
góc AEB=1/2*180=90 độ
góc CDA=1/2*180=90 độ
góc CEB=góc CDB
=>CDEB nội tiếp
1: Xét (O) có
\(\widehat{ABC}\) là góc nội tiếp chắn nửa đường tròn
nên \(\widehat{ABC}=90^0\)
Xét (O') có
\(\widehat{ABD}\) là góc nội tiếp chắn nửa đường tròn
nên \(\widehat{ABD}=90^0\)
Ta có: \(\widehat{ABC}+\widehat{ABD}=\widehat{CBD}\)
\(\Leftrightarrow\widehat{CBD}=90^0+90^0=180^0\)
hay C,B,D thẳng hàng(đpcm)