K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b: Để hai đường song song thì \(\left\{{}\begin{matrix}2m+1=2\\2k-3< >3k\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{1}{2}\\k< >3\end{matrix}\right.\)

2 tháng 1 2022

a, để 2 đường thẳng cắt nhau thì a≠a' hay:\(2\ne2m+1\Rightarrow m\ne\dfrac{1}{2}\)

b, để 2 đường thẳng song song thì \(\left\{{}\begin{matrix}a=a'\\b\ne b'\end{matrix}\right.\) hay \(\left\{{}\begin{matrix}2=2m+1\\3k\ne2k-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{1}{2}\\k\ne-3\end{matrix}\right.\)

c, để 2 đường thẳng trùng nhau thì \(\left\{{}\begin{matrix}a=a'\\b=b'\end{matrix}\right.\) hay \(\left\{{}\begin{matrix}2=2m+1\\3k=2k-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{1}{2}\\k=-3\end{matrix}\right.\)

7 tháng 10 2017

Hàm số y = 2x + 3k có các hệ số a = 2, b = 3k.

Hàm số y = (2m + 1)x + 2k – 3 có các hệ số a' = 2m + 1, b' = 2k – 3.

Hai hàm số đã cho là hàm số bậc nhất nên 2m + 1 ≠ 0

Để học tốt Toán 9 | Giải bài tập Toán 9

a) Hai đường thẳng cắt nhau khi a ≠ a' tức là:

    2 ≠ 2m + 1 ⇔ 2m ≠ 1

Để học tốt Toán 9 | Giải bài tập Toán 9

b) Hai đường thẳng song song với nhau khi a = a' và b ≠ b' tức là:

    2 = 2m + 1 và 3k ≠ 2k – 3

Để học tốt Toán 9 | Giải bài tập Toán 9

c) Hai đường thẳng trùng nhau khi a = a' và b = b' tức là:

    2 = 2m + 1 và 3k = 2k – 3

Để học tốt Toán 9 | Giải bài tập Toán 9

9 tháng 12 2017

(1;1)

9 tháng 12 2017

(1;1)

23 tháng 8 2023

`a)` Hai đường thẳng cắt nhau `<=>{(a ne a'),(a' ne 0):}`

                 `<=>{(3 ne -2m+1),(-2m+1 ne 0):}<=>{(m ne -1),(m ne 1/2):}`

`b)` Hai đường thẳng song song `<=>{(a' ne 0),(a=a'),(b ne b'):}`

           `<=>{(m ne 1/2),(3=-2m+1),(-2k ne 2k-4):}`

          `<=>{(m=-1),(k ne 1):}`

Hai đường thẳng trùng nhau khi a = a' và b = b' tức là:

    2 = 2m + 1 và 3k = 2k – 3

HT

2 tháng 10 2021

câu a đây mong bạn tham thảo

a: Để hai đường thẳng này cắt nhau thì \(2m+1< >2\)

=>\(2m\ne1\)

=>\(m\ne\dfrac{1}{2}\)

b: Để hai đường thẳng này song song thì \(\left\{{}\begin{matrix}2m+1=2\\2k-3\ne3k\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2m=1\\-k\ne3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{1}{2}\\k\ne-3\end{matrix}\right.\)

c: Để hai đường thẳng này trùng nhau thì \(\left\{{}\begin{matrix}2m+1=2\\2k-3=3k\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2m=1\\-k=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{1}{2}\\k=-3\end{matrix}\right.\)

2 tháng 10 2021

Anser reply image

Lai cho cá vàng đi ạ

 
2 tháng 10 2021

a) Hàm số \(y=2x+3k\) có các hệ số \(a=2,b=3k\)

Hàm số \(y=\left(2m+1\right)x+2k-3\) có các hệ số  \(a'=2m+1,b'=2k-3\)

Hai hàm số đã cho là hàm số bậc nhất nên \(2m+1\ne0\)

                                                                      \(\Leftrightarrow m\ne-\frac{1}{2}\)

Hai đường thẳng song song với nhau khi \(a=a'\) và \(b\ne b'\) tức là:

         \(2=2m+1\) và \(3k\ne2k-3\)

Kết hợp với điều kiện trên ta có:  \(m=\frac{1}{2}.k\ne-3\)

 b) Hai đường thẳng song song:

\(\Leftrightarrow\hept{\begin{cases}2=2m+1\\3k\ne2k-3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}m=\frac{1}{2}\\k\ne-3\end{cases}}\)

c) Hai đường thẳng trùng nhau:

\(\Leftrightarrow\hept{\begin{cases}2=2m+1\\3k=2k-3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}m=\frac{1}{2}\\k=-3\end{cases}}\)

2 tháng 10 2021
 Anser reply imageLai cho cá vàng đi ạ 
18 tháng 4 2017

Hai đường thẳng trùng nhau khi a = a' và b = b' tức là:

    2 = 2m + 1 và 3k = 2k – 3

Để học tốt Toán 9 | Giải bài tập Toán 9