Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Có AC=3AB => \(\frac{{AB}}{{AC}} = \frac{1}{3}\)
- Có B′D′=3A′B′ => \(\frac{{A'B'}}{{B'D'}} = \frac{1}{3}\)
=> \(\frac{{AB}}{{A'B'}} = \frac{{AC}}{{B'D'}}\)
Xét tam giác vuông ABC (vuông tại A) và tam giác vuông A'B'D' (vuông tại C) có
=> \(\frac{{AB}}{{A'B'}} = \frac{{AC}}{{B'D'}}\)
=> ΔABC \( \backsim \) ΔC′D′B′ (1)
- Xét ΔC′D′B′ và ΔA′B′C′
Có B'C' chung, A′B′=C′D′, A′C′=B′D′ (hai hình chéo của chữ nhật)
=> ΔC′D′B′=ΔA′B′C′ (2)
Từ (1) và (2) chung =>ΔABC\( \backsim \) ΔA′B′C′
b) - Vì A′B′=2AB => \(\frac{{AB}}{{A'B'}} = \frac{1}{2}\)
mà ΔABC ∽ ΔA'B'C' => \(\frac{{AB}}{{A'B'}} = \frac{{AC}}{{A'C'}} = \frac{{BC}}{{B'C'}} = \frac{1}{2}\)
- Có diện tích ABCD là: AB.BC
Có diện tích A'B'C'D' là: A′B′.B′C′
=> Xét tỉ lệ hai tam giác ABCD và A'B'C'D', có
\(\frac{{AB.BC}}{{A'B'.B'C'}} = \frac{{AB}}{{A'B'}}.\frac{{BC}}{{B'C'}} = \frac{1}{4}\)
=> \(S_{A′B′C′D′}=4S_{ABCD}\)
mà \(S_{ABCD}=2m^2\) => \(S_{A′B′C′D′}=8m^2\)
a: AD vuông góc DC
AD vuông góc D'D
=>AD vuông góc (DCC'D')
=>AD vuông góc DC'
Xét tứ giác ADC'B' có
AD//C'B'
AD=C'B'
góc ADC'=90 độ
=>ADC'B' là hình chữ nhật
b: AA'=16cm
AB=12cm
=>A'B=20cm
=>AB'=20cm
A'C'=căn 29^2-16^2=3*căn 65(cm)
A'B'=12cm
=>B'C'=căn A'C'^2-A'B'^2=21(cm)
S ADC'B'=21*20=420cm2
a) Vì \(\frac{{AB''}}{{AB}} = \frac{{AC''}}{{AC}} = \frac{{AD''}}{{AD}}\) nên hình chữ nhật AB”C”D” đồng dạng phối cảnh với hình chữ nhật ABCD.
b) Ta có: \(\frac{{A'B'}}{{B'C'}} = \frac{{AB}}{{BC}} \Rightarrow \frac{{A'B'}}{{AB}} = \frac{{B'C'}}{{BC}}\)
Mà \(\frac{{AB''}}{{AB}} = \frac{{B'C'}}{{BC}} \Rightarrow A'B' = AB''\)
Ta có hình chữ nhật AB”C”D” đồng dạng phối cảnh với hình chữ nhật ABCD
\( \Rightarrow \frac{{B''C''}}{{BC}} = \frac{{AB''}}{{AB}}\)
Mà \(\frac{{AB''}}{{AB}} = \frac{{B'C'}}{{BC}} \Rightarrow \frac{{B''C''}}{{BC}} = \frac{{B'C'}}{{BC}} \Rightarrow B''C'' = B'C'\)
c) Ta có: \(\frac{{A'B'}}{{B'C'}} = \frac{{AB}}{{BC}} \Rightarrow \frac{{A'B'}}{{AB}} = \frac{{B'C'}}{{BC}}\)
Vậy hình chữ nhật ABCD đồng dạng với hình chữ nhật A’B’C’D’.
a) Diện tích đáy hình hộp chữ nhật:
Thể tích hình hộp chữ nhật:
b) tam giác A'B'C' vuông tại B. Áp dụng định lý PITAGO ta có:
Lời giải:
Cạnh đáy: $\sqrt{25}=5$ (cm)
Chiều cao: $5.3=15$ (cm)
a. Diện tích xung quanh: $5.15.4=300$ (cm vuông)
Đáp án D
b. Độ dài đường chéo đáy: $\sqrt{5^2+5^2}=5\sqrt{2}$ (cm)
Độ dài đường chéo hình hộp:
$\sqrt{(5\sqrt{2})^2+15^2}=5\sqrt{11}$ (cm)
Đáp án D.
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Vậy: BC=10cm
a) Xét ΔABC có
BD là đường phân giác ứng với cạnh AC(gt)
nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)(Tính chất tia phân giác của tam giác)
hay \(\dfrac{AD}{6}=\dfrac{CD}{10}\)
mà AD+CD=AC=8(cm)(D nằm giữa A và C)
nên Áp dụng tính chất của dãy tỉ số bằng nhau,ta được:
\(\dfrac{AD}{6}=\dfrac{CD}{10}=\dfrac{AD+CD}{6+10}=\dfrac{8}{16}=\dfrac{1}{2}\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{AD}{6}=\dfrac{1}{2}\\\dfrac{CD}{10}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AD=3\left(cm\right)\\CD=5\left(cm\right)\end{matrix}\right.\)
Vậy: AD=3cm; CD=5cm
a:
AC=3AB; B'D'=3A'B'
=>AC/B'D'=AB/A'B'=AC/A'C'
Xét ΔABC vuông tại B và ΔA'B'C' vuông tại B' có
AC/A'C'=AB/A'B'
=>ΔABC đồng dạng với ΔA'B'C'
b: ΔABC đồng dạng với ΔA'B'C'
=>S ABC/S A'B'C'=(1/2)^2=1/4
=>S ABCD/S A'B'C'D=1/4
=>S A'B'C'D'=8cm2