K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2020

∙2/(a+b)=2/(a2+b2)≥(a+b)2⇒a+b≤2

Do đó:

S=a/a+1+b/b+1=(1−1/a+1)+(1−1/b+1)=2−(1/a+1+1/b+1)≤2−4/a+b+2≤2−4/2+2=1

AH
Akai Haruma
Giáo viên
29 tháng 12 2023

Lời giải:

Áp dụng BĐT Cô-si:

$\frac{a^2}{2}+8b^2\geq 2\sqrt{\frac{a^2}{2}.8b^2}=4ab$

$\frac{a^2}{2}+8c^2\geq 2\sqrt{\frac{a^2}{2}.8c^2}=4ac$

$2(b^2+c^2)\geq 2.2\sqrt{b^2c^2}=4bc$

Cộng các BĐT trên theo vế và thu gọn ta được:

$a^2+10(b^2+c^2)\geq 4(ab+bc+ac)=4$

Ta có đpcm.

10 tháng 3 2022

toán 7 hửm ?

10 tháng 3 2022

hình như là 9

12 tháng 7 2020

thx ban

21 tháng 4 2021

Để \(\frac{2a+2b}{ab+1}\) là bình phương của 1 số nguyên thì 2a + 2b chia hết cho ab + 1; mà ab + 1 chia hết cho 2a + 2b => ab + 1 = 2b + 2a
=> \(\frac{2a+2b}{ab+1}\)=1 = 12

11 tháng 8 2019

\(\hept{\begin{cases}a+3c=2016\\a+2b=2017\end{cases}}\left(1\right)\)

Cộng từng vế của hệ (1), ta được:

\(2a+2b+3c=4033\)

\(\Leftrightarrow2a+2b+2c=4033-c\)

\(\Leftrightarrow2\left(a+b+c\right)=4033-c\)

Vì c không âm nên \(4033-c\le4033\)

\(\Rightarrow a+b+c\le\frac{4033}{2}=2016\frac{1}{2}\)

Vậy GTLN của P là \(2016\frac{1}{2}\Leftrightarrow c=0\)

Lúc đó: \(a=2016;b=\frac{1}{2}\)

13 tháng 7 2020

Ta có: a + 3c = 2016 ; a + 2b = 2017

Do đó : 2a + 2b + 3c = 2a + 2b + 2c + c = 2 (a + b + c) + c = 4033  

Suy ra: 2 (a + b + c) = 4033 - c

Để 2 (a + b + c) lớn nhất thì 4033 - c lớn nhất

Nên c nhỏ nhất , mà c >= 0 nên c = 0.

Từ đó ta suy ra  : 2 (a + b + c) <= 4033 <=> a + b + c <= 2016,5

Vậy Max P = 2016,5 

Khi c = 0 ; a = 2016 ; b = 0,5

3 tháng 4 2016

a+3=8

suy ra a=5

ta có: 5+2b=9

2b=4

b=2

vậy a+b=2+5=7

tổng a+b+c</7 cóGTLN