K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2017

Đáp án C

Suy ra f(t) đồng biến trên TXĐ và pt f(t) = 21 chỉ có 1 nghiệm duy nhất

Ta thấy t = 10 là 1 nghiệm của pt nên t = 10 là nghiệm duy nhất của pt

⇒ 11 − 2 x − y = 10 ⇒ y = 1 − 2 x ⇒ P = 16 x 2 ( 1 − 2 x ) − 2 x ( 3 − 6 x + 2 ) − 1 + 2 x + 5 = − 32 x 3 + 28 x 2 − 8 x + 4 P ' = − 96 x 2 + 56 x − 8 P ' = 0 ⇔ x = 1 4 x = 1 3 P ( 0 ) = 4 , P ( 1 3 ) = 88 27 , P ( 1 4 ) = 13 4 , P ( 1 2 ) = 3 ⇒ m = 13 4 , M = 4 ⇒ M + 4 m = 17

23 tháng 7 2019

Suy ra f(t) đồng biến trên TXĐ và pt f ( t ) = 21  chỉ có 1 nghiệm duy nhất

Ta thấy t = 10 là 1 nghiệm của pt nên t = 10 là nghiệm duy nhất của pt

⇒ 11 - 2 x - y = 10 ⇒ y = 1 - 2 x ⇒ P = 16 x 2 1 - 2 x - 2 x 3 - 6 x + 2 - 1 + 2 x + 5 = - 32 x 3 + 28 x 2 - 8 x + 4 P ' = - 96 x 2 + 56 x - 8 P ' = 0 ⇔ [ x = 1 4 x = 1 3 P 0 = 4 , P 1 3 = 88 27 ,   P 1 4 = 13 4 , P 1 2 = 3 ⇒ m = 13 4 ,   M = 4 ⇒ M + 4 m = 17

 

16 tháng 8 2019

20 tháng 7 2017


12 tháng 10 2019

Đáp án B

Từ giả thiết

2017 1 − y 2017 x = x 2 + 2018 1 − y 2 + 2018 ⇔ 2017 1 − y 1 − y 2 + 2018 = 2017 x x 2 + 2018   *  

Xét hàm số f t = 2017 t t 2 + 2018  với t ∈ 0 ; 1  

⇒ f ' t = 2017 t ln 2017 t 2 + 2018 + 2 t .2017 t > 0  

⇒ f t đồng biến trên 0 ; 1 .  Do đó (*)  ⇔ 1 − y = x ⇔ x + y = 1.

Ta có: 0 ≤ x y ≤ x + y 2 4 = 1 4 .  Đặt  m = x y ∈ 0 ; 1 4 . Khi đó :

S = 16 x 2 y 2 + 34 x y + 12 y + x y + x 2 − 3 x y = 16 m 2 − 2 m + 12 = g m  

Xét hàm g m  trên đoạn

0 ; 1 4 ⇒ g ' m = 32 m − 2 → g ' m = 0 ⇔ m = 1 16  

Lúc này

g 0 = 12 , g 1 4 = 25 2 , g 1 16 = 191 16 ⇒ M = 25 2 m = 191 16 ⇒ M + m = 391 16 .

1 tháng 12 2018

Đáp án C

Ta có x + y = 3 ⇒ y = 3 − x ≥ 1 ⇔ x ≤ 2 ⇒ x ∈ 0 ; 2  

Khi đó  P = f x = x 3 + 2 3 − x 2 + 3 x 2 + 4 x 3 − x − 5 x = x 3 + x 2 − 5 x + 18

Xét hàm số f x = x 3 + x 2 − 5 x + 18  trên đoạn 0 ; 2 ,  có f ' x = 3 x 2 + 2 x − 5  

Phương trình 0 ≤ x ≤ 2 3 x 2 + 2 x − 5 = 0 ⇔ x = 1.  Tính f 0 = 18 , f 1 = 15 , f 2 = 20  

Vậy min 0 ; 2 f x = 15 , m a x 0 ; 2 f x = 20  hay P m a x = 20  và  P min = 15

20 tháng 1 2018

21 tháng 11 2017

Chọn đáp án B

Vậy có 5 giá trị nguyên của m thỏa mãn điều kiện.

18 tháng 12 2018

Đáp án B

Ta có  2017 1 − x − y = x 2 + 2018 y 2 − 2 y + 2019 ⇔ 2017 1 − y 2017 x = x 2 + 2018 1 − y 2 + 2018

2017 x x 2 + 2018 = 2017 1 − y 1 − y 2 + 2018 ⇔ f x = f 1 − y

Xét hàm số f t = 2017 t t 2 + 2018 = t 2 .2017 t + 2018.2017 t , có

                  f ' t = 2 t .2017 t + t 2 .2017 t . ln 2017 + 2018.2017 t . ln 2017 > 0 ; ∀ t > 0

Suy ra f(t) là hàm đồng biến trên 0 ; + ∞  mà  f x = f 1 − y ⇒ x + y = 1

Lại có  P = 4 x 2 + 3 y 4 y 2 + 3 x + 25 x y = 16 x 2 y 2 + 12 x 3 + 12 y 3 + 34 x y

16 x 2 y 2 + 12 x + y 3 − 3 x y x + y + 34 x y = 16 x 2 y 2 + 12 1 − 3 x y + 34 x y = 16 x 2 y 2 − 2 x y + 12

Mà 1 = x + y ≥ 2 x y ⇔ x y ≤ 1 4  nên đặt t = x y ∈ 0 ; 1 4 khi đó  P = f t = 16 t 2 − 2 t + 12

Xét hàm số f t = 16 t 2 − 2 y + 12  trên 0 ; 1 4  ta được  min 0 ; 1 4 f t = f 1 16 = 191 16 max 0 ; 1 4 f t = f 1 4 = 25 2

23 tháng 4 2017