Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bđt côsi ta có:
\(\hept{\begin{cases}\sqrt{\left(x+y\right)4}\le\frac{x+y+4}{2}\left(1\right)\\\sqrt{\left(z+y\right)4}\le\frac{y+z+4}{2}\left(2\right)\\\sqrt{\left(z+x\right)4}\le\frac{z+x+4}{2}\left(3\right)\end{cases}}\)
Lấy \(\left(1\right)+\left(2\right)+\left(3\right)\)ta được:
\(2P\le x+y+z+6=12\)
\(\Leftrightarrow p\le6\)
Dấu"="xảy ra \(\Leftrightarrow x=y=z=2\)
Vậy \(P_{max}=6\)\(\Leftrightarrow x=y=z=2\)
Ta có điều kiện \(\hept{\begin{cases}y\ge-6\\x\ge-6\\x+y\ge0\end{cases}}\)
Theo đề bài thì: \(x+y=\sqrt{x+6}+\sqrt{y+6}\)
\(\Leftrightarrow\left(x+y\right)^2=\left(\sqrt{x+6}+\sqrt{y+6}\right)^2\)
\(\Leftrightarrow P^2\le\left(1^2+1^2\right)\left(x+y+12\right)\)
\(\Leftrightarrow P^2-2P-24\ge0\)
\(\Leftrightarrow-4\le P\le6\)
\(\Leftrightarrow-4< P\le6\left(1\right)\)
Ta lại có:
\(\Leftrightarrow\left(x+y\right)^2=\left(\sqrt{x+6}+\sqrt{y+6}\right)^2\)
\(\Leftrightarrow P^2=x+y+12+2\sqrt{\left(x+6\right)\left(y+6\right)}\)
\(\Leftrightarrow P^2-P-12=2\sqrt{\left(x+6\right)\left(y+6\right)}\ge0\)
\(\Leftrightarrow\left(P+3\right)\left(P-4\right)\ge0\)
\(\Leftrightarrow\orbr{\begin{cases}P\le-3\left(l\right)\\P\ge4\left(2\right)\end{cases}}\)
Từ (1) và (2) \(\Rightarrow4\le P\le6\)
Vậy GTNN là \(P=4\)đạt được khi \(\hept{\begin{cases}x=-6\\y=10\end{cases}}or\hept{\begin{cases}x=10\\y=-6\end{cases}}\)
GTLN là \(P=6\) đạt được khi \(x=y=3\)
*)Maximize : Áp dụng BĐT Cauchy-Schwarz ta có:
\(VT^2\le\left(1+1\right)\left(x+1+y+1\right)=2\left(x+y+2\right)\)
Và \(VP^2=\left(\sqrt{2}\left(x+y\right)\right)^2=2\left(x+y\right)^2\)
\(\Rightarrow2\left(x+y\right)^2\le2\left(x+y+2\right)\)
\(\Rightarrow\left(x+y\right)^2-\left(x+y\right)-2\le0\)
\(\Rightarrow\left(x+y-2\right)\left(x+y+1\right)\le0\)
\(\Rightarrow-1\le P=x+y\le2\)
Khi \(x=y=1\) thì \(P_{Max}=2\)
*)Minimize: Áp dụng BĐT Karamata ta có:
\(VT=\sqrt{2}\left(x+y\right)=\sqrt{x+1}+\sqrt{y+1}=VP\)
\(\ge\sqrt{0}+\sqrt{x+1+y+1}\)
\(\Rightarrow\sqrt{2}\left(x+y\right)\ge\sqrt{x+1+y+1}\)
\(\Rightarrow2\left(x+y\right)^2\ge\left(x+y\right)+2\)
\(\Rightarrow2\left(x+y\right)^2-\left(x+y\right)-2\ge0\)
\(\Rightarrow P=x+y\ge\frac{1+\sqrt{17}}{4}\)
Khi \(x=\frac{5+\sqrt{17}}{4};y=-1\) thì \(P_{Min}=\frac{1+\sqrt{17}}{4}\)
#Vỗ tay coi :))
tìm Max và Min của P=\(x\sqrt{1+y}+y\sqrt{1+x}\) trong đó x, y là cá số thực không âm thỏa mãn x+y=1
1) \(\frac{1}{2}=\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)\(\Leftrightarrow\)\(x+y\ge8\)
\(\frac{1}{2}=\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}\)\(\Leftrightarrow\)\(xy=2\left(x+y\right)\ge16\)
\(A=\sqrt{x}+\sqrt{y}\ge2\sqrt[4]{xy}\ge2\sqrt[4]{16}=4\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=4\)
2) \(B=\sqrt{3x-5}+\sqrt{7-3x}\ge\sqrt{3x-5+7-3x}=\sqrt{2}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\orbr{\begin{cases}x=\frac{5}{3}\\x=\frac{7}{3}\end{cases}}\)
\(B=\sqrt{3x-5}+\sqrt{7-3x}\le\frac{3x-5+1+7-3x+1}{2}=2\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=2\)
ĐKXĐ: x ; y > -6
Ta có :\(x-\sqrt{y+6}=\sqrt{x+6}-y\)
\(\Rightarrow x+y=\sqrt{x+6}+\sqrt{y+6}\)
\(\Leftrightarrow P=\sqrt{x+6}+\sqrt{y+6}\left(\text{ }Do\text{ }VP\ge0\text{ }nen\text{ }P\ge0,dau\text{ }\text{ }\text{ }\text{ }"="khi\text{ }x=y=-6\right)\)
\(\Rightarrow P^2=x+y+12+2\sqrt{\left(x+6\right)\left(y+6\right)}\le P+12+x+y+12\)
\(\Leftrightarrow P^2\le2P+24\)
\(\Leftrightarrow P^2-2P-24\le0\)
\(\Leftrightarrow-4\le P\le6\)
Nên Pmax = 6 khi... (Tự làm nhé)
Pmin = 0 khi x = y = -6