Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi MA và MB theo thứ tự là khoảng cách từ M đến Ox và Oy
Xét hai tam giác vuông OMA và OMB có:
OM là cạnh chung
MA = MB (gt)
Do đó ΔOMA=ΔOMB (cạnh huyền – cạnh góc vuông)
Suy ra: M O A ^ = M O B ^ (hai góc tương ứng)
Vậy OM là tia phân giác của x O y ^
Vậy thứ tự sắp xếp phải là: b, c, a, d, e.
Chọn đáp án A
(Bạn tự vẽ hình giùm)
1/ \(\Delta ABC\)vuông tại A
=> \(BC^2=AB^2+AC^2\)(định lý Pitago)
=> \(BC^2=9^2+6^2\)
=> \(BC^2=9+36\)
=> \(BC^2=45\)
=> \(BC=\sqrt{45}\)(cm)
2/ Ta có: \(AE=EC=\frac{AC}{2}=\frac{6}{2}\)= 3 (cm)
\(\Delta BAD\)và \(\Delta EAD\)có: BA = EA (= 3cm)
\(\widehat{BAD}=\widehat{EAD}\)(AD là tia phân giác \(\widehat{A}\))
Cạnh AD chung
=> \(\Delta BAD\)= \(\Delta EAD\)(c. g. c) (đpcm)
3/ \(\Delta ABC\)và \(\Delta AME\)có: \(\widehat{A}\)chung
AB = AE (\(\Delta BAD\)= \(\Delta EAD\))
\(\widehat{ABC}=\widehat{AEM}\)(\(\Delta BAD\)= \(\Delta EAD\))
=> \(\Delta ABC\)= \(\Delta AME\)(g. c. g) => AC = AM (hai cạnh tương ứng)
nên \(\Delta ACM\)cân tại A
và \(\widehat{A}=90^o\)
=> \(\Delta ACM\)vuông cân tại A (đpcm)
4/ Ta có: \(\widehat{AEM}+\widehat{AME}=90^o\)
=> \(\widehat{AEM}< 90^o\)(vì số đo của \(\widehat{AEM}\)và \(\widehat{AME}\)luôn luôn là số dương)
=> \(\widehat{MEC}>90^o\)(tự chứng minh)
=> \(\Delta MEC\)tù => MC là cạnh lớn nhất => ME < MC
áp dụng đ/lý pitago vào tam giác v ABC ta đ̣c BC^2=AB^2+AC^2=3^2+6^2 BC=3căn5 cm câu b xét tam g ABD và tam g AED ta cóAB=AE=3 cm góc BAD=góc EAD(gt) AD chung nên 2 tam g = nhau câu c góc ABC=góc AEM(VÌgócABD=AED mà AED+AME=90 độ) xét tam giác ABC và tg AMEcógócA chung AB=AE gócABC=AEM nên 2 tgiác =nhau suy raAM=AC suy ra tamg AMC v cân
a, góc ở đỉnh bảng 80o
b, góc ở đáy bằng 55o
c,số đo góc B và góc C=(180-góc A) /2
1
a) Vì trong một tam giác cân , hai góc ở đấy bằng nhau nên tổng 2 góc ở đáy của tam giác cân đó có số đo độ là :
50 + 50 = 1000
=> Góc ở đỉnh của tam giác cân có số đo độ là :
1800 - 1000 = 800
b) Vì trong một tam giác cân , hai góc ở đấy bằng nhau nên nếu 1 góc ở đáy của tam giác đó bằng 700 => góc còn lại ở đáy phải bằng 700
c) Số đo góc B và góc C bằng :
( 180 - A)/2
cạnh: AB = DE , BC = EF , AC = DF
góc: A = D, B= E, C = F
k nhé
Kí hiệu: \(\Delta ABC=\Delta NPM\)