K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 1 2023

Đề là đường kính AD hay sao nhỉ?

25 tháng 1 2023

Mình làm tắt nha bạn không hiểu đâu thì hỏi lại nhé

a) MA, MB là tiếp tuyến

=> \(\widehat{OBM}=\widehat{OAM}=90^o\) (t/c tiếp tuyến)

=> \(\widehat{OBM}+\widehat{OAM}=180^o\)

mà 2 góc đối nhau

=> tứ giác AOBM nội tiếp

=> 4 điểm A, O, B, M cùng thuộc 1 đường tròn

b) Áp dụng hệ thức lượng vào tam giác OAM vuông tại A đường cao AH

=> \(AM^2=MH.MO\)

Áp dụng hệ thức lượng vào tam giác DAM vuông tại A đường cao AC

=> \(AM^2=MC.MD\)

=> \(AM^2=MH.MO=MC.MD\)

a: góc OAM+góc OBM=90+90=180 độ

=>AOBM nội tiếp

b: góc BOM=1/2*góc AOB=góc BCA

a giải thích em làm sao 1/2 AOB = góc BCA được ạ

1. Cho đường tròn (O; 5). Dây cung MN cách tâm O một khoảng bằng 3. Khi đó: A. MN = 8. B. MN = 4 C. MN = 3. D.kết quả khác. 2. Trong các câu sau, câu nào sai ? A. Tâm của đường tròn là tâm đối xứng của nó. B. Đường thẳng a là tiếp tuyến của (O) khi và chỉ khi đường thẳng a đi qua O. C. Đường kính vuông góc với dây cung thì chia dây...
Đọc tiếp

1. Cho đường tròn (O; 5). Dây cung MN cách tâm O một khoảng bằng 3. Khi đó:

A. MN = 8.

B. MN = 4

C. MN = 3.

D.kết quả khác.

2. Trong các câu sau, câu nào sai ?

A. Tâm của đường tròn là tâm đối xứng của nó.

B. Đường thẳng a là tiếp tuyến của (O) khi và chỉ khi đường thẳng a đi qua O.

C. Đường kính vuông góc với dây cung thì chia dây cung ấy thành hai phần bằng nhau.

D. Bất kỳ đường kính nào cũng là trục đối xứng của đường tròn.

3. Nếu hai đường tròn (O); (O’) có bán kính lần lượt là 5 cm và 3 cm và khoảng cách hai tâm là 7 cm thì hai đường tròn

A. tiếp xúc ngoài.

B. tiếp xúc trong.

C. không có điểm chung.

D. cắt nhau tại hai điểm.

4. Cho ∆ABC cân tại A nội tiếp đường tròn (O). Phát biểu nào sau đây đúng ? Tiếp tuyến với đường tròn tại A là đường thẳng

A. đi qua A và vuông góc với AB.

B. đi qua A và vuông góc với AC.

C. đi qua A và song song với BC.

D. cả A, B, C đều sai.

5. Cho (O; 6 cm), M là một điểm cách điểm O một khoảng 10 cm. Qua M kẻ tiếp tuyến với (O). Khi đó khoảng cách từ M đến tiếp điểm là:

A. 4 cm.

B. 8 cm.

C. 2\(\sqrt{34}\) cm.

D. 18 cm.

1
10 tháng 3 2020

@Phạm Lan Hương

@Nguyễn Ngọc Lộc

@Nguyễn Việt Lâm

9 tháng 6 2021

a) Vì BD là đường kính \(\Rightarrow\angle BED=90\)

Vì MB,MA là tiếp tuyến \(\Rightarrow\Delta MAB\) cân tại M và MO là phân giác \(\angle AMB\)

\(\Rightarrow MO\bot AB\Rightarrow\angle MHB=90\)

Ta có: \(\angle MHB=\angle MEB=90\Rightarrow MEHB\) nội tiếp

Xét \(\Delta MAE\) và \(\Delta MDA:\) Ta có: \(\left\{{}\begin{matrix}\angle MAE=\angle MDA\\\angle DMAchung\end{matrix}\right.\)

\(\Rightarrow\Delta MAE\sim\Delta MDA\left(g-g\right)\Rightarrow\dfrac{MA}{ME}=\dfrac{MD}{MA}\Rightarrow MA^2=MD.ME\)

b) MEHB nội tiếp \(\Rightarrow\angle MHE=\angle MBE=\angle MDB\)

Vì \(\Delta MBD\) vuông tại B có \(MB=BD=2R\Rightarrow\Delta MBD\) vuông cân tại B

\(\Rightarrow\angle MDB=45\Rightarrow\angle MHE=45\)

c) Xét \(\Delta MOB\) và \(\Delta BAF:\) Ta có: \(\left\{{}\begin{matrix}\angle MBO=\angle BFA=90\\\angle BOM=\angle BAF=\dfrac{1}{2}\angle BOA\end{matrix}\right.\)

\(\Rightarrow\Delta MOB\sim\Delta BAF\left(g-g\right)\Rightarrow\dfrac{AF}{AB}=\dfrac{OB}{MO}=\dfrac{OD}{MO}\left(1\right)\)

Vì \(\Delta MBD\) vuông cân tại B có \(BE\bot MD\Rightarrow\angle EBD=45\)

mà \(\Delta BFK\) vuông tại F \(\Rightarrow\Delta BFK\) vuông cân tại F \(\Rightarrow\angle BKF=45\)

Xét \(\Delta BAK\) và \(\Delta MOD:\) Ta có: \(\left\{{}\begin{matrix}\angle ABK=\angle DOM\left(MEHBnt\right)\\\angle BKA=\angle MDO=45\end{matrix}\right.\)

\(\Rightarrow\Delta MOD\sim\Delta BAK\left(g-g\right)\Rightarrow\dfrac{AK}{AB}=\dfrac{OD}{MO}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\dfrac{AK}{AB}=\dfrac{AF}{AB}\Rightarrow AK=AF\Rightarrow\) đpcm

undefined