Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vẽ đồ thị:
b) - Từ hình vẽ ta có: yA = yB = 4 suy ra:.
+ Hoành độ của A: 4 = 2.xA => xA = 2 (*)
+ Hoành độ của B: 4 = xB => xB = 4
=> Tọa độ 2 điểm là: A(2, 4); B(4, 4)
- Tìm độ dài các cạnh của ΔOAB
((*): muốn tìm tung độ hay hoành độ của một điểm khi đã biết trước hoành độ hay tung độ, ta thay chúng vào phương trình đồ thị hàm số để tìm đơn vị còn lại.)
b) Điểm M có tung độ y = 1 nên hoành độ là
Điểm N có tung độ y = 1 nên hoành độ là
b. Đồ thị đt đề cho là y=6
PTGD 2 đt đầu bài với đt câu b là: \(\left\{{}\begin{matrix}2x=6\\x-1=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\rightarrow A\left(3;6\right)\\x=7\rightarrow B\left(7;6\right)\end{matrix}\right.\)
a) - Với hàm số y = x + 1:
Cho x = 0 => y = 1 ta được M(0; 1).
Cho y = 0 => x + 1 = 0 => x = -1 ta được B(-1; 0).
Nối MB ta được đồ thị hàm số y = x + 1.
- Với hàm số y = -x + 3:
Cho x = 0 => y = 3 ta được E(0; 3).
Cho y = 0 => -x + 3 = 0 => x = 3 ta được A(3; 0).
Nối EA ta được đồ thị hàm số y = -x + 3.
b) Từ hình vẽ ta có:
- Đường thẳng y = x + 1 cắt Ox tại B(-1; 0).
- Đường thẳng y = -x + 3 cắt Ox tại A(3; 0).
- Hoành độ giao điểm C của 2 đồ thị hàm số y = x + 1 và y = -x + 3 là nghiệm phương trình:
x + 1 = -x + 3
=> x = 1 => y = 2
=> Tọa độ C(1; 2)
c) Ta có: AB = 3 + 1 = 4
\(b,\) PT giao Ox tại A và B: \(\left\{{}\begin{matrix}x+2=0\Rightarrow x=-2\Rightarrow A\left(-2;0\right)\\-x+4=0\Rightarrow x=4\Rightarrow B\left(4;0\right)\end{matrix}\right.\)
PT hoành độ giao điểm: \(x+2=-x+4\Rightarrow x=1\Rightarrow y=3\Rightarrow C\left(1;3\right)\)
\(c,OA=\left|x_A\right|=2;OB=\left|x_B\right|=4\\ \Rightarrow AB=OA+OB=6\left(cm\right)\\ \left\{{}\begin{matrix}AC=\sqrt{\left(-2-1\right)^2+3^2}=2\sqrt{3}\left(cm\right)\\BC=\sqrt{\left(4-1\right)^2+3^2}=2\sqrt{3}\left(cm\right)\end{matrix}\right.\)
Kẻ đường cao CH của ABC
\(\Rightarrow CH=\left|y_C\right|=3\left(cm\right)\)
\(\Rightarrow P_{ABC}=AB+BC+CA=4\sqrt{3}+6\left(cm\right)\\ S_{ABC}=\dfrac{1}{2}CH\cdot AB=\dfrac{1}{2}\cdot3\cdot6=9\left(cm^2\right)\)
a: Thay y=0 vào (1), ta được:
2x-1=0
hay \(x=\dfrac{1}{2}\)
Thay x=0 vào (1), ta được:
\(y=2\cdot0-1=-1\)
Vậy: \(A\left(\dfrac{1}{2};0\right)\); B(0;-1)
Thay y=0 vào (2), ta được:
x-1=0
hay x=1
Thay x=0 vào (2), ta được:
y=0-1=-1
Vậy: M(1;0); N(0;-1)