K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2019

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Ta có: y(1) = -3 , y(3) = 7

Từ đó ta có hai phương trình tiếp tuyến phải tìm là:

y + 3 = −5(x – 1) ⇔ y = −5x + 2

y – 7 = −5(x – 3) ⇔ y = −5x + 22

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

23 tháng 9 2018

a) Học sinh tự làm.

b) Giải sách bài tập Toán 12 | Giải sbt Toán 12

Ta có: y(1) = -3 , y(3) = 7

Từ đó ta có hai phương trình tiếp tuyến phải tìm là:

y + 3 = −5(x – 1) ⇔ y = −5x + 2

y – 7 = −5(x – 3) ⇔ y = −5x + 22

7 tháng 8 2017

Đáp án C

, y’ đạt giá trị nhỏ nhất bằng –5 tại x = –1.

25 tháng 1 2018

16 tháng 5 2019

a) Học sinh tự làm

b) Ta có: y′ = –4 x 3  – 2x

Vì tiếp tuyến vuông góc với đường thẳng y = x/6 – 1 nên tiếp tuyến có hệ số góc là –6. Vì vậy:

–4 x 3  – 2x = –6

⇔ 2 x 3  + x – 3 = 0

⇔ 2( x 3  – 1) + (x – 1) = 0

⇔ (x – 1)(2 x 2  + 2x + 3) = 0

⇔ x = 1(2 x 2  + 2x + 3 > 0, ∀x)

Ta có: y(1) = 4

Phương trình phải tìm là: y – 4 = -6(x – 1) ⇔ y = -6x + 10

22 tháng 6 2018

Ta có: y′ = –4 x 3  – 2x

Vì tiếp tuyến vuông góc với đường thẳng y = x/6 – 1 nên tiếp tuyến có hệ số góc là –6. Vì vậy:

–4 x 3  – 2x = –6

⇔ 2 x 3  + x – 3 = 0

⇔ 2( x 3  – 1) + (x – 1) = 0

⇔ (x – 1)(2 x 2  + 2x + 3) = 0

⇔ x = 1(2 x 2  + 2x + 3 > 0, ∀ x)

Ta có: y(1) = 4

Phương trình phải tìm là: y – 4 = -6(x – 1) ⇔ y = -6x + 10

Gọi \(M\left(x_0;y_0\right)\) là tiếp điểm

Ta có: y' \(=\dfrac{-3}{\left(x+1\right)^2}\)

k=f'\(\left(x_0\right)\)\(\Rightarrow-3=\dfrac{-3}{\left(x_0+1\right)^2}\Leftrightarrow\left(x_0+1\right)^2=1\)\(\Leftrightarrow\left[{}\begin{matrix}x_0=0\\x_0=-2\end{matrix}\right.\)

Với \(x_0=0\) ta có pt tiếp tuyến:

\(d:3x+y-2=0\)

Với \(x_0=-2\) ta có pt tiếp tuyến:

\(d:3x+y+10=0\)

a: Tọa độ giao điểm của (d) với trục Ox là:

y=0 và (-x+2)=0

=>x=2 và y=0

\(y'=\dfrac{\left(-x+2\right)'\left(x+1\right)-\left(-x+2\right)\left(x+1\right)'}{\left(x+1\right)^2}\)

\(=\dfrac{\left(-\left(x+1\right)+x-2\right)}{\left(x+1\right)^2}=\dfrac{-3}{\left(x+1\right)^2}\)

Khi x=2 thì y'=-3/(2+1)^2=-3/9=-1/3

y-f(x0)=f'(x0)(x-x0)

=>y-0=-1/3(x-2)

=>y=-1/3x+2/3

b: Tọa độ giao của (d) với trục Oy là;

x=0 và y=(-0+2)/(0+1)=2

Khi x=0 thì \(y'=\dfrac{-3}{\left(0+1\right)^2}=-3\)

y-f(x0)=f'(x0)(x-x0)

=>y-2=-3(x-0)

=>y=-3x+2

NV
6 tháng 2 2021

\(y'=\dfrac{3}{\left(x+1\right)^2}\)

Gọi \(M\left(m;\dfrac{2m-1}{m+1}\right)\) là tiếp điểm

Phương trình tiếp tuyến tại M:

\(y=\dfrac{3}{\left(m+1\right)^2}\left(x-m\right)+\dfrac{2m-1}{m+1}\)

\(\Leftrightarrow3x-\left(m+1\right)^2y+2m^2-2m-1=0\)

Áp dụng công thức khoảng cách:

\(\dfrac{\left|-\left(m+1\right)^2+2m^2-2m-1\right|}{\sqrt{9+\left(m+1\right)^4}}=1\)

Bạn tự giải ra m nhé

a: y'=3x^2-6

f(1)=1-6+5=0

f'(1)=3-6=-3

y-f(1)=f'(1)(x-1)

=>y-0=-3(x-1)

=>y=-3x+3

b: y=5

=>x^3-6x=0

=>x=0 hoặc x=căn 6 hoặc x=-6

TH1: x=0

y=5; y'=3*0^2-6=-6

Phương trình sẽ là:

y-5=-6(x-0)

=>y=-6x+5

TH2: x=căn 6

y=5; y'=3*6-6=12

Phương trình sẽ là:

y-5=12(x-căn 6)

=>y=12x-12căn 6+5

TH3: x=-căn 6

y=5; y'=12

Phương trình sẽ là:

y-5=12(x+căn 6)

=>y=12x+12căn 6+5