Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Để hàm số đồng biến trên R thì m-2>0
hay m>2
b: Thay x=0 và y=5 vào hàm số, ta được:
m+3=5
hay m=2
a: Để hàm số đồng biến thì m-2>0
hay m>2
b: Thay x=0 và y=5 vào hàm số,ta được:
\(m+3=5\)
hay m=2
a: Để hàm số đồng biến thì m-2>0
hay m>2
b: Thay x=0 và y=5 vào hàm số,ta được:
\(m+3=5\)
hay m=2
\(a,\) Đồng biến \(\Leftrightarrow m+2>0\Leftrightarrow m>-2\)
Nghịch biến \(\Leftrightarrow m+2<0\Leftrightarrow m<-2\)
Gia su \(x_1< x_2\)
\(\Rightarrow x_1-x_2< 0\left(1\right)\)
Ta co:
\(f\left(x_1\right)-f\left(x_2\right)=\left(3m^2-7m+5\right)x_1-2011-\left(3m^2-7m+5\right)x_2+2011=\left(x_1-x_2\right)\left(3m^2-7m+5\right)\)Vi la chung minh dong bien nen xet
\(3m^2-7m+5>0\)
Dat \(g\left(m\right)=3m^2-7m+5\)
Ta lai co:
\(\Delta=\left(-7\right)^2-4.3.5=-11< 0\)
Theo dinh li dau tam thuc bac hai thi \(g\left(m\right)\)cung dau voi he so 3
\(\Rightarrow3m^2-7m+5>0\left(2\right)\left(\forall m\right)\)
Tu \(\left(1\right)\)va \(\left(2\right)\)suy ra;
\(\left(x_1-x_2\right)\left(3m^2-7m+5\right)< 0\)
Ma \(f\left(x_1\right)-f\left(x_2\right)=\left(x_1-x_2\right)\left(3m^2-7m+5\right)\)
\(\Rightarrow f\left(x_1\right)< f\left(x_2\right)\)
Vay ham so \(y=f\left(x\right)=\left(3m^2-7m+5\right)x-2011\)dong bien voi moi m
\(a,HSĐB\Leftrightarrow-\dfrac{3}{2}m+5>0\Leftrightarrow m>\dfrac{10}{3}\\ b,m=2\Rightarrow y=2x-6\\ Chọn.3.điểm:A\left(0;-6\right);B\left(2;-2\right);C\left(3;0\right)\)
Anh chọn điểm em tự vẽ đồ thị hi
a) Hàm số đồng biến khi:
-3m/2 + 5 > 0
⇔ -3m/2 > -5
⇔ m < 10/3
b) m = 2
⇔ y = 2x - 6
Cho x = 0 thì y = -6 ⇒ A(0; -6)
y = 0 thì x = 3 ⇒ B(3; 0)
*) Đồ thị:
a: Để hàm số đồng biến thì -3/(4m-5)>0
=>4m-5<0
=>m<5/4
b: Để hàm số nghịch biến thì -3/(4m-5)<0
=>4m-5>0
=>m>5/4
Câu 1:
a) Để hàm số \(y=\left(3m+5\right)\cdot x^2\) nghịch biến với mọi x>0 thì \(3m+5< 0\)
\(\Leftrightarrow3m< -5\)
hay \(m< -\dfrac{5}{3}\)
Vậy: Để hàm số \(y=\left(3m+5\right)\cdot x^2\) nghịch biến với mọi x>0 thì \(m< -\dfrac{5}{3}\)
b) Để hàm số \(y=\left(3m+5\right)\cdot x^2\) đồng biến với mọi x>0 thì
3m+5>0
\(\Leftrightarrow3m>-5\)
hay \(m>-\dfrac{5}{3}\)
Vậy: Để hàm số \(y=\left(3m+5\right)\cdot x^2\) đồng biến với mọi x>0 thì \(m>-\dfrac{5}{3}\)
2.
Để hàm nghịch biến với x>0 \(\Leftrightarrow\sqrt{3k+4}-3< 0\)
\(\Leftrightarrow\sqrt{3k+4}< 3\Leftrightarrow3k+4< 9\)
\(\Rightarrow-\dfrac{4}{3}\le k< \dfrac{5}{3}\)
Để hàm đồng biến khi x>0
\(\Leftrightarrow\sqrt{3k+4}-3>0\Leftrightarrow\sqrt{3k+4}>3\)
\(\Leftrightarrow3k+4>9\Rightarrow k>\dfrac{5}{3}\)
Hàm số y = ( − 2 m 2 + 4 m – 5 ) x − 7 m + 5 là hàm số đồng biến khi
− 2 m 2 + 4 m – 5 > 0
Nhận thấy − 2 m 2 + 4 m – 5 = − 2 m 2 − 4 m + 5 = − 2 m 2 − 2 m + 1 – 3 = − 2 m – 1 2 – 3 < 0 , m
Nên hàm số nghịch biến với mọi m, nghĩa là không có giá trị nào của m để hàm đã cho đồng biến.
Đáp án cần chọn là: C