Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Có y ' = 1 x − 1 2 . Hàm số đồng biến trên tứng khoảng ( ta chỉ xét khoảng liên tục, không bị ngắt khoảng).
Đáp án A
Phương pháp:
Xét tính đúng sai của các đáp án dựa vào các kiến thức hàm số đồng biến, nghịch biến trên khoảng xác định.
Cách giải:
*2 sai vì với c 1 < c 2 bất kỳ nằm trong a ; b ta chưa thể so sánh được f c 1 và f c 2
*3 sai. Vì y' bằng 0 tại điểm đó thì chưa chắc đã đổi dấu qua điểm đó. VD hàm số y = x 3
*4 sai: Vì thiếu điều kiện tại f ' x = 0 hữu hạn điểm.VD hàm số y = 1999 có y ' = 0 ≥ 0 nhưng là hàm hằng.
Chú ý khi giải:
HS thường nhầm lẫn:
- Khẳng định số 4 vì không chú ý đến điều kiện bằng 0 tại hữu hạn điểm.
- Khẳng định số 3 vì không chú ý đến điều kiện đổi dấu qua nghiệm.
Đáp án B.
Ta có: Tập xác định của hàm số y = x 2 3 + 2017 là R nên y ' = 2 3 x 3
Ta có bảng biến thiên
(I) sai vì hàm số chỉ đồng biến trên 0 ; + ∞ ;
(II) đúng là hàm số đạt cực tiểu x = 0; EM NHÌN KĨ BẢNG BIẾN THIÊN NHÉ!
(III) sai vì giá trị nhỏ nhất của hàm số là 2017
(IV) sai vì hàm số nghịch biến trên − ∞ ; 0
Lỗi sai
Ø Có bạn sẽ nhìn nhanh và nhầm y ' = 2 3 x 3 > 0 và kết luận là I đúng
Ø Có bạn sẽ không xét tại x = 0 vì tại đó y' không xác định. Hàm số vẫn đạt cực tiểu tại x = 0. Ta xét các điểm cực trị làm y' = 0 hoặc y' không xác định.
Đáp án D
Phương pháp: +) Khảo sát sự biến thiên của đồ thị hàm số.
+) Hàm số đạt cực trị tại điểm x = x 0 ⇔ y ' x 0 = 0 và x = x 0 được gọi là điểm cực trị.
+) Hàm số đạt cực trị tại điểm x = x 0 thì y x 0 là giá trị cực trị.
Như vậy có 3 mệnh đề đúng.
Chú ý: Học sinh thường giá trị cực trị và
điểm cực trị nên có thể chọn sai mệnh dề (2) đúng.
Đáp án D
Khẳng định số II sai.
Dựa vào bảng biến thiên ta thấy hàm số đồng biến trên khoảng - ∞ ; - 2
Đáp án C
Vậy hàm số nghịch biến trên các khoảng - ∞ ; 3 và 3 ; + ∞