Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Suy ra đồ thị hàm số có 1 đường TCN y = 0.
Do đó đồ thị hàm số có đúng 2 đường tiệm cận đồ thị hàm số có đứng 1 đường tiệm cận đứng phương trình m x 2 - 2 x + 4 = 0 có nghiệm kép hoặc có 2 nghiệm phân biệt trong đó có 1 nghiệm x = 2.
Vậy có 1 giá trị của m thỏa mãn yêu cầu bài toán.
Chọn A
Điều kiện:
Ta thấy
⇒ đồ thị hàm số có đúng một TCĐcó đúng một nghiệm
TH1: Phương trình (*) có nghiệm kép
TH2: Phương trình (*) có 2 nghiệm phân biệt
Kết hợp các TH và điều kiện bài cho trước ta có: thỏa mãn điều kiện bài toán
Chọn D
Chú ý khi giải: Chú ý điều kiện
Chọn D
Đồ thị hàm số có đúng hai tiệm cận đứng
có 2 nghiệm phân biệt khác 1.
Chọn A.
Ta có
nên đồ thị hàm số có một đường tiệm cận ngang y = 0.
nên không tồn tại giới hạn
Do vậy đồ thị hàm số chỉ có một tiệm cận ngang y = 0.
Để đồ thị hàm số có bốn đường tiệm cận thì phương trình (1) có ba nghiệm phân biệt.
Số nghiệm của (2) là giao điểm của đường thẳng y = 1 –m và đồ thị hàm số
Xét hàm số Ta có
Bảng biến thiên
Dựa vào bảng biến thiên, ta thấy (2) có ba nghiệm phân biệt ⇔ -4 < 1-m < 0 ⇔ 1 < m < 5
Chọn C
Ta có:
nên đồ thị hàm số luôn có 1 TCN là y = 0
Đồ thị hàm số có 2 đường tiệm cận thì nó chỉ có duy nhất 1 đường tiệm cận đứng
⇔ phương trình x 2 + m x + 4 = 0 có nghiệm x = 1
hoặc phương trình x 2 + m x + 4 = 0 có nghiệm kép (có thể bằng 1)
Vậy có 3 giá trị của m thỏa mãn bài toán