Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
Nếu \(m=0\), \(f\left(x\right)=2x\)
\(\Rightarrow m=0\) không thỏa mãn
Nếu \(x\ne0\)
Yêu cầu bài toán thỏa mãn khi \(\left\{{}\begin{matrix}m< 0\\\Delta'=\left(m-1\right)^2-4m^2< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow m< -\dfrac{1}{3}\)
Hàm số xác định khi \(\left\{{}\begin{matrix}x^2+2mx+2018m+2019>0\\mx^2+2mx+2020\ge0\end{matrix}\right.\)
Xét \(f\left(x\right)=x^2+2mx+2018m+2019\)
Có: \(\Delta'=m^2-2018m-2019\)
Để \(f\left(x\right)>0\) thì \(\Delta'< 0\Leftrightarrow m^2-2018m-2019< 0\Leftrightarrow-1< m< 2019\)(*)
Xét \(g\left(x\right)=mx^2+2mx+2020\)
Dễ thấy \(m=0\) thì \(g\left(x\right)=\sqrt{2020}>0\)(1)
Để \(g\left(x\right)\ge0\) thì \(\left\{{}\begin{matrix}m>0\\\Delta'\le0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\m^2-2020m\le0\end{matrix}\right.\)\(\Leftrightarrow0< m\le2020\) (2)
(1),(2)\(\Rightarrow g\left(x\right)\ge0\Leftrightarrow0\le m\le2020\) (**)
(*),(**) suy ra hàm số xác định khi \(0\le m< 2019\)
Do đó tập hợp các giá trị nguyên của m để hàm số xác định là:
\(S=\left\{m\in Z|0\le m< 2019\right\}\) và tập hợp có 2019 phần tử
Với \(m=0\Rightarrow f\left(x\right)=-2x-1\le0\Leftrightarrow x\ge-\dfrac{1}{2}\)
\(\Rightarrow m=0\) không thỏa mãn yêu cầu bài toán.
Với \(m\ne0\), \(f\left(x\right)\le0,\forall x\in R\Leftrightarrow\left\{{}\begin{matrix}m< 0\\\Delta'=1+m\le0\end{matrix}\right.\Leftrightarrow m\le-1\)
\(\Rightarrow m\in\left\{m\in Z|-10< m\le-1\right\}\)
Vậy có 9 số nguyên thỏa mãn yêu cầu bài toán.
ĐKXĐ
\(mx^4+mx^3+\left(m+1\right)x^2+mx+1\)
\(=\left(mx^4+mx^3+mx^2+mx\right)+\left(x^2+1\right)\)
=\(mx\left(x^3+x^2+x+1\right)+\left(x^2+1\right)\)
\(=mx\left(x+1\right)\left(x^2+1\right)+\left(x^2+1\right)\)
\(=\left(x^2+1\right).\left[mx\left(x+1\right)+1\right]>0\left(\forall x\right)\)
\(=>mx^2+mx+1>0\left(\forall x\right)\)
\(=>PT\hept{\begin{cases}mx^2+mx+1=0\left(zô\right)nghiệm\forall x\\m>0\end{cases}}\)
\(\hept{\begin{cases}\Delta< 0\\m>0\end{cases}=>\hept{\begin{cases}m^2-4m< 0\\m>0\end{cases}=>\hept{\begin{cases}m\left(m-4\right)< 0\\m>0\end{cases}=>0< m< 4}}}\)
=> m có 3 giá trị là 1,2,3 nha
https://olm.vn/hoi-dap/detail/249896752542.html?pos=586036211459
giúp mk cả câu này