K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2019

Chọn B

Ta có g’(x) = f’(x) + 1.

 Đồ thị của hàm số y= g’(x) là phép tịnh tiến đồ thị của hàm số y= f’(x) theo phương song song  với Oy lên trên 1 đơn vị.

Khi đó đồ thị hàm số y= g’(x) cắt trục hoành tại hai điểm phân biệt.

=> Hàm số y= g(x) có 2 điểm cực trị.

29 tháng 8 2019

Đáp án B

Ta có

.

.

Hình bên dưới là đồ thị của hàm số .

Dựa vào hình vẽ ta thấy đồ thị hàm số cắt nhau tại 2 điểm phân biệt, đồng thời khi hoặc , khi .

Do đó đổi dấu qua , .

Vậy hàm số g(x) có hai điểm cực trị.

1 tháng 11 2017

5 tháng 8 2019

NV
17 tháng 7 2021

a.

TXĐ: \(D=\left[-4;2\right]\)

\(0\le\sqrt{9-\left(x+1\right)^2}\le3\Rightarrow-1\le\sqrt{9-\left(x+1\right)^2}\le2\)

\(\Rightarrow f'\left(\sqrt{8-x^2-2x}-1\right)\le0\) ; \(\forall x\in D\)

\(g'\left(x\right)=-\dfrac{x+1}{\sqrt{8-x^2-2x}}.f'\left(\sqrt{8-x^2-2x}-1\right)\) luôn cùng dấu \(x+1\)

\(\Rightarrow g\left(x\right)\) đồng biến trên \(\left[-1;2\right]\) và nghịch biến trên \(\left[-4;-1\right]\)

Từ BBT ta thấy \(g\left(x\right)_{max}=g\left(-4\right)=g\left(2\right)=f\left(-1\right)=?\)

\(g\left(x\right)_{min}=g\left(-1\right)=f\left(2\right)=?\)

(Do đề chỉ có thế này nên ko thể xác định cụ thể được min-max)

b.

\(g'\left(x\right)=\left(2x+1\right).f'\left(x^2+x\right)=0\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\f'\left(x^2+x\right)=0\left(1\right)\end{matrix}\right.\)

Xét (1), ta chỉ cần quan tâm 2 nghiệm bội lẻ:

\(f'\left(x^2+x\right)=0\Rightarrow\left[{}\begin{matrix}x^2+x=-1\left(vô-nghiệm\right)\\x^2+x=2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

Với \(\left[{}\begin{matrix}x\le-2\\x\ge1\end{matrix}\right.\) \(\Rightarrow x^2+x\ge2\) ; với \(-2\le x\le1\Rightarrow-1\le x^2+x\le2\) nên ta có bảng xét dấu:

undefined

Từ BBT ta có: \(x=-\dfrac{1}{2}\) là cực đại, \(x=-2;x=1\) là 2 cực tiểu

Hàm đồng biến trên ... bạn tự kết luận

9 tháng 2 2019

Ta có 

Suy ra đồ thị của hàm số g’ (x)  là phép tịnh tiến đồ thị hàm số y= f’ (x)  theo phương Oy xuống dưới đơn vị.

Ta có và dựa vào đồ thị của hàm số y= f’ (x),  ta suy ra đồ thị của hàm số g’ (x)  cắt trục hoành tại 4 điểm.

Chọn D.

10 tháng 7 2017

9 tháng 3 2017

Ta có bảng biến thiên như hình vẽ sau:

Giá trị nhỏ nhất của hàm số là f( b)  nhưng giá trị lớn nhất có thể là f (a) hoặc f( e)  Theo giả thiết ta có: f(a) + f( c)) = f( b) + f( d)   nên f(a) - f( d)) = f( b) - f(  c)< 0

Suy ra : f( a) < f( d) < f( e)  

Vậy  m a x [ a ; e ]   f ( x ) = f ( e ) ;   m i n [ a ; e ]   f ( x ) = f ( b )

Chọn  C.

24 tháng 3 2017

Chọn B 

Để g( x) = f( x+ 1) =>  g’(x) = f’( x+1) 

Hàm số y=  g’(x) = f’( x+ 1) có đồ thị là phép tịnh tiến của đồ thị hàm số y= f’(x) theo phương trục hoành sang trái 1 đơn vị. 

Khi đó đồ thị hàm số y= g’(x)= f’( x+1)  vẫn cắt trục hoành tại 1 điểm.

30 tháng 5 2018