K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 11 2017

Đáp án B

Tập xác định: D = ℝ \ 1 2 ⇒  Hàm số y = m x + 1 2 x − 1  liên tục và đơn điệu trên 1 ; 3  

  ⇒ a . b = y 1 . y 3 = m + 1 1 . 3 m + 1 5 = 1 5

  ⇔ m + 1 3 m + 1 = 1 ⇔ 3 m 2 + 4 m = 0 ⇔ m = 0 m = − 4 3

Vậy có 2 giá trị m thỏa mãn.

20 tháng 11 2017

15 tháng 3 2017

Chọn A.

Phương pháp: Sử dụng đạo hàm để tìm giá trị lớn nhất và giá trị nhỏ nhất.

Vậy có 1 số nguyên dương là 3 nằm giữa M và m

6 tháng 10 2019

Đáp án B.

Từ

f x . f ' x = 2 x f 2 x + 1 ⇒ f x . f ' x f 2 x + 1 = 2 x ⇒ ∫ f x . f ' x f 2 x + 1 d x = ∫ 2 x d x

 (1)

Đặt  

f 2 x + 1 = t ⇒ f 2 x = t 2 − 1 ⇒ 2 f x . f ' x d x = 2 t d t ⇒ f x . f ' x d x = t d t

Suy ra   ∫ f x . f ' x f 2 x + 1 x = ∫ t d t t = ∫ d t = t + C 1 = f 2 x + 1 + C 1   ∫ 2 x d x = x 2 + C 2

Từ (1) ta suy ra  f 2 x + 1 + C 1 = x 2 + C 2   . Do   f 0 = 0 nên C 2 − C 1 = 1 .

Như vậy  

f 2 x + 1 = x 2 + C 2 − C 1 = x 2 + 1 ⇒ f 2 x = x 2 + 1 2 − 1 = x 4 + 2 x 2

⇒ f x = x 4 + 2 x 2 = x x 2 + 2 = x x 2 + 2

 (do x ∈ 1 ; 3 ).

Ta có f ' x = x 2 + 2 + x 2 x 2 + 2 = 2 x 2 + 1 x 2 + 2 > 0, ∀ x ∈ ℝ ⇒  Hàm số f x = x x 2 + 2  đồng biến trên R nên f x  cũng đồng biến trên  1 ; 3   .

Khi đó M = max 1 ; 3 f x = f 3 = 3 11  và m = min 1 ; 3 f x = f 1 = 3 .

Vậy 

P = 2 M − m = 6 11 − 3 ⇒ a = 6 ; b = 1 ; c = 0 ⇒ a + b + c = 7

 

26 tháng 3 2018

Đáp án B

y ' = − 8 x − 3 2 < 0 ;   M = f 0 = 1 3 ;   m = f 2 = − 5. Vậy M + m = 14 3 .

26 tháng 3 2019

Đáp án B.

ĐK:  0 ≤ x ≤ 1 . Với điều kiện này ta thấy rằng tử là nghịch biên (x tăng thì giá trị tử giảm đi) còn mẫu là đồng biến và mẫu dương (x tăng thì mẫu tăng theo) vì vậy tổng thể hàm y  là hàm nghịch biến. Do đó M = max x ∈ 0 ; 1 y = y 0 = 1 ; m = min x ∈ 0 ; 1 y = y 1 = − 1  vậy  M − m = 2.

21 tháng 5 2019

Đáp án C

16 tháng 8 2018

17 tháng 6 2018

12 tháng 5 2018

Đáp án D.