K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Phương trình hoành độ giao điểm là:

\(\dfrac{1}{4}x^2=2x-3\)

\(\Leftrightarrow x^2=8x-12\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}y=\dfrac{1}{4}\cdot2^2=1\\y=\dfrac{1}{4}\cdot6^2=9\end{matrix}\right.\)

1 tháng 10 2021

bạn làm luôn câu b hoặc câu c đc ko

a: Phương trình hoành độ giao điểm là:

\(\dfrac{1}{4}x^2=2x-3\)

\(\Leftrightarrow x^2-8x+12=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}y=1\\y=9\end{matrix}\right.\)

8 tháng 4 2021

Theo Cô si       4x+\frac{1}{4x}\ge2  , đẳng thức xảy ra khi và chỉ khi   4x=\frac{1}{4x}=1\Leftrightarrow x=\frac{1}{4}). Do đó

                                         A\ge2-\frac{4\sqrt{x}+3}{x+1}+2016

                                        A\ge4-\frac{4\sqrt{x}+3}{x+1}+2014

                                        A\ge\frac{4x-4\sqrt{x}+1}{x+1}+2014=\frac{\left(2\sqrt{x}-1\right)^2}{x+1}+2014\ge2014

Hơn nữa    A=2014 khi và chỉ khi \left\{{}\begin{matrix}x=\dfrac{1}{4}\\2\sqrt{x}-1=0\end{matrix}\right.  \Leftrightarrow x=\dfrac{1}{4} .

Vậy  GTNN  =  2014

28 tháng 11 2023

a:

loading...

b: phương trình hoành độ giao điểm là:

4x+2=2x-2

=>4x-2x=-2-2

=>2x=-4

=>x=-2

Thay x=-2 vào y=4x+2, ta được:

\(y=4\cdot\left(-2\right)+2=-8+2=-6\)

Vậy: M(-2;-6)

c: Tọa độ A là:

\(\left\{{}\begin{matrix}y=0\\4x+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\4x=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\x=-\dfrac{1}{2}\end{matrix}\right.\)

Tọa độ B là:

\(\left\{{}\begin{matrix}y=0\\2x-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\2x=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\x=1\end{matrix}\right.\)

Vậy: B(1;0); A(-1/2;0)

d: M(-2;-6); B(1;0); A(-1/2;0)

\(MA=\sqrt{\left(-\dfrac{1}{2}+2\right)^2+\left(0-6\right)^2}=\dfrac{3\sqrt{17}}{2}\)

\(MB=\sqrt{\left(1+2\right)^2+\left(0+6\right)^2}=3\sqrt{5}\)

\(AB=\sqrt{\left(-\dfrac{1}{2}-1\right)^2+\left(0-0\right)^2}=\dfrac{3}{2}\)

Chu vi tam giác MAB là:

\(C_{MAB}=MA+MB+AB=\dfrac{3}{2}+3\sqrt{5}+\dfrac{3\sqrt{17}}{2}\)

Xét ΔMAB có \(cosAMB=\dfrac{MA^2+MB^2-AB^2}{2\cdot MA\cdot MB}=\dfrac{9}{\sqrt{85}}\)

=>\(sinAMB=\sqrt{1-\left(\dfrac{9}{\sqrt{85}}\right)^2}=\dfrac{2}{\sqrt{85}}\)

Diện tích tam giác MAB là:

\(S_{AMB}=\dfrac{1}{2}\cdot MA\cdot MB\cdot sinAMB=\dfrac{1}{2}\cdot\dfrac{3\sqrt{17}}{2}\cdot3\sqrt{5}\cdot\dfrac{2}{\sqrt{85}}\)

\(=\dfrac{9}{2}\)

 

BÀI 1Cho hàm số y=ax^2 có đồ thị Pa) tìm a biết rằng P qua điểm A (1;-1) .Vẻ P với a vừa tìm đượcb) trên P lấy điểm B có hoành độ -2, tìm phương trình của đường thẳng AB và tìm tọa độ giao điểm D của đường thẳng AB và trục tungc)viết phương trình đường thẳng (d) qua O và song song với AB, xác định toạ độ giao điểm C của (d) và P (C khác 0)d( chứng tỏ OCDA là hình vuông BÀI 2:Cho hàm...
Đọc tiếp

BÀI 1
Cho hàm số y=ax^2 có đồ thị P
a) tìm a biết rằng P qua điểm A (1;-1) .Vẻ P với a vừa tìm được
b) trên P lấy điểm B có hoành độ -2, tìm phương trình của đường thẳng AB và tìm tọa độ giao điểm D của đường thẳng AB và trục tung
c)viết phương trình đường thẳng (d) qua O và song song với AB, xác định toạ độ giao điểm C của (d) và P (C khác 0)
d( chứng tỏ OCDA là hình vuông

 

BÀI 2:
Cho hàm số y=ax^2
a) tìm a biét đồ của thị hàm số đã cho đi qua điểm A(-căn 3; 3). vẽ đồ thị P của hàm số với a vừa tìm được
b)trên P lấy 2 điểm B, C có hoành độ lần lượt là 1, 2 .Hảy viết phương trình đường thẳng BC
c) cho D( căn 3;3). Chứng tỏ điểm D thuộc P và tam giác OAD là tam giác đều.Tính diện tích của tam giác OAD

 

BÀI 5:Cho hàm số y=2x+b hãy xác định hệ số b trong các trường hợp sau :
a) đồ thị hàm số đã cho cắt trục tung tại điểm có tung độ bằng -3
b) đồ thị của hàm số cắt trục hoành tại điểm có hoành độ bằng 1.5

0