Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Thay x=0 và y=2 vào (d), ta được:
a=2
b: Thay x=-1 và y=0 vào (d), ta được:
\(-\left(a-2\right)+a=0\)
\(\Leftrightarrow2=0\)(vô lý)
a) Để đồ thị hàm số đi qua điểm A(-2;3), ta thay x = -2 và y = 3 vào phương trình hàm số:
3 = (2m+1)(-2) + 3m - 1
Giải phương trình, ta có:
3 = -4m - 2 + 3m - 1
3 = -m - 3
m = -6
b) Để đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng 2, ta thay x = 2 vào phương trình hàm số:
0 = (2m+1)(2) + 3m - 1
Giải phương trình, ta có:
0 = 4m + 2 + 3m - 1
0 = 7m + 1
m = -1/7
c) Để đồ thị hàm số cắt trục tung tại điểm có tung độ bằng 2, ta thay y = 2 vào phương trình hàm số:
2 = (2m+1)x + 3m - 1
2 = (2m+1)x + 3m - 1
(2m+1)x + 3m = 3
d) Để đồ thị hàm số cắt đường thẳng Y = x + 2 tại điểm có hoành độ bằng 3, ta thay x = 3 vào phương trình hàm số và đường thẳng:
(2m+1)(3) + 3m - 1 = 3 + 2
Giải phương trình, ta có:
6m + 4 = 5
m = 1/6
e) Để đồ thị hàm số cắt đường thẳng Y = -x - 3 tại điểm có tung độ bằng -1, ta thay y = -1 vào phương trình hàm số và đường thẳng:
-1 = (2m+1)x + 3m - 1 = -x - 3
(2m+1)x + 3m = -2
g) Để vẽ đồ thị hàm số khi m = 2, ta thay m = 2 vào phương trình hàm số:
Y = (2(2)+1)x + 3(2) - 1
Y = 5x + 5
a: Thay x=-2 và y=3 vào (d), ta được:
-2(2m+1)+3m-1=3
=>-4m-2+3m-1=3
=>-m-3=3
=>m+3=-3
=>m=-6
b: Thay x=2 và y=0 vào (d), ta được:
2(2m+1)+3m-1=0
=>7m+3=0
=>m=-3/7
c: Thay x=0 và y=2 vào (d), ta được:
0(2m+1)+3m-1=2
=>3m-1=2
=>m=1
d: Thay x=3 vào y=x+2, ta được:
y=3+2=5
Thay x=3; y=5 vào (d), ta được:
3(2m+1)+3m-1=5
=>9m+2=5
=>9m=3
=>m=1/3
e: Thay y=-1 vào y=-x-3, ta được:
-x-3=-1
=>x+3=1
=>x=-2
Thay x=-2 và y=-1 vào (d), ta được:
-2(2m+1)+3m-1=-1
=>-4m-2+3m-1=-1
=>-m-3=-1
=>-m=2
=>m=-2
g: Khi m=2 thì (d) sẽ là:
y=(2*2+1)x+3*2-1
=5x+5
......................?
mik ko biết
mong bn thông cảm
nha ................
Bài 1:
Đặt: (d): y = (m+5)x + 2m - 10
Để y là hàm số bậc nhất thì: m + 5 # 0 <=> m # -5
Để y là hàm số đồng biến thì: m + 5 > 0 <=> m > -5
(d) đi qua A(2,3) nên ta có:
3 = (m+5).2 + 2m - 10
<=> 2m + 10 + 2m - 10 = 3
<=> 4m = 3
<=> m = 3/4
(d) cắt trục tung tại điểm có tung độ bằng 9 nên ta có:
9 = (m+5).0 + 2m - 10
<=> 2m - 10 = 9
<=> 2m = 19
<=> m = 19/2
(d) đi qua điểm 10 trên trục hoành nên ta có:
0 = (m+5).10 + 2m - 10
<=> 10m + 50 + 2m - 10 = 0
<=> 12m = -40
<=> m = -10/3
(d) // y = 2x - 1 nên ta có:
\(\hept{\begin{cases}m+5=2\\2m-10\ne-1\end{cases}}\) <=> \(\hept{\begin{cases}m=-3\\m\ne\frac{9}{2}\end{cases}}\) <=> \(m=-3\)
a, Thay x = -2 => y = -2 + 4 = 2 => A(-2;2)
(d) cắt y = x + 4 tại A(-2;2) <=> 2 = -2 ( m + 1 ) - 2
<=> -2m - 2 - 2 = 2 <=> -2m = 6 <=> m = -3
Vậy (d) : y = -2x - 2
b, bạn tự vẽ nhé
c, Cho x = 0 => y = -2
=> (d) cắt trục Oy tại A(0;-2) => OA = | -2 | = 2
Cho y = 0 => x = -1
=> (d) cắt trục Ox tại B(-1;0) => OB = | -1 | = 1
Ta có : \(S_{OAB}=\frac{1}{2}.OA.OB=\frac{1}{2}.2.1=1\)( dvdt )
Đặt: (d): y = (m+5)x + 2m - 10
Để y là hàm số bậc nhất thì: m + 5 # 0 <=> m # -5
Để y là hàm số đồng biến thì: m + 5 > 0 <=> m > -5
(d) đi qua A(2,3) nên ta có:
3 = (m+5).2 + 2m - 10
<=> 2m + 10 + 2m - 10 = 3
<=> 4m = 3
<=> m = 3/4
(d) cắt trục tung tại điểm có tung độ bằng 9 nên ta có:
9 = (m+5).0 + 2m - 10
<=> 2m - 10 = 9
<=> 2m = 19
<=> m = 19/2
(d) đi qua điểm 10 trên trục hoành nên ta có:
0 = (m+5).10 + 2m - 10
<=> 10m + 50 + 2m - 10 = 0
<=> 12m = -40
<=> m = -10/3
(d) // y = 2x - 1 nên ta có:
\hept{m+5=22m−10≠−1\hept{m+5=22m−10≠−1 <=> \hept{m=−3m≠92\hept{m=−3m≠92 <=> m=−3
Giả sử (d) luôn đi qua điểm cố định M(x0; y0)
Ta có: y0=(m+5)x0+2m−10y0=(m+5)x0+2m−10
<=> mx0+5x0+2m−10−y0=0mx0+5x0+2m−10−y0=0
<=> m(xo+2)+5x0−y0−10=0m(xo+2)+5x0−y0−10=0
Để M cố định thì: \hept{x0+2=05x0−y0−10=0\hept{x0+2=05x0−y0−10=0 <=> \hept{x0=−2y0=−20\hept{x0=−2y0=−20
Vậy...
Trước hết xin nói ngay rằng đồ thị của hàm số y = (2x - 1)(x - 1) là một parabol, không có đường tiệm cận nào cả.
Có lẽ bạn muốn nói đến hàm số y = (2x - 1)/(x - 1).
Nếu đúng vậy thì đồ thị của hàm số là một hyperbol vuông góc có hai đường tiệm cận là đường thẳng x = 1 và đường thẳng y = 2.
Giao điểm của hai đường tiệm cận là I(1; 2).
Gọi M(x,y) là một điểm trên đồ thị. Hệ số góc của đường thẳng IM là
m = (y - 2)/(x - 1) = {[(2x - 1)/(x - 1)] - 2}/(x - 1) = [(2x - 1) - 2(x - 1)]/(x - 1)²
m = 1/(x - 1)²
Hệ số góc của đường tiếp tuyến Mt với đồ thị tại M(x,y) là
m' = dy/dx = -1/(x - 1)²
Muốn cho MI và Mt thẳng góc với nhau thì điều kiện cần và đủ là
mm' = -1
-1/(x - 1)^4 = -1
(x - 1)^4 = 1
(x - 1)² = 1
x - 1 = ±1
x = 0 hay x = 2
Có 2 điểm M thỏa mãn điều kiện của bài toán là (0; 1) và (2; 3)
a) để hàm số y=(m+5).x+2m-10 là hàm số bậc nhất thì
m+5 khác 0 <=> m khác -5
b) để hàm số y=(m+5).x+2m-10 là hàm số đồng biến thì
m+5>0 <=> m> -5
c) để hàm số y=(m+5).x+2m-10 đi qua điểm A(2;3) => x=2;y=3
Thay x=2;y=3 vào hàm số y=(m+5).x+2m-10 ta có:
3=(m+5).2+2m-10
<=> 13=2m+10+2m
<=> 3=4m <=> m=3/4
d)vì đồ thị hàm số y=(m+5).x+2m-10 cắt trục tung tại điểm có tung độ bằng 9 => x=0;y=9
thay x=0;y=9 vào hàm số y=(m+5).x+2m-10 ta có:
9=(m+5).0+2m-10 <=> 19=2m <=> m=19/2=9.5
e) vì đồ thị hàm số y=(m+5).x+2m-10 cắt trục hoành tại điểm có hoành độ là 10 => x=10;y=0
thay x=10;y=0 vào hàm số y=(m+5).x+2m-10 ta có:
0=(m+5).10+2m-10 <=> 0= 10m+50+2m-10
<=> -40=12m <=> m= -10/3
g) để đồ thị hàm số y=(m+5).x+2m-10 song song với đths y=2x-1 thì
m+5=2 <=> m=-3