Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có
y' = (a - 1) x 2 + 2ax + 3a - 2.
Với a = 1, y' = 2x + 1 đổi dấu khi x đi qua -1/2. Hàm số không đồng biến.
Với a ≠ 1 thì với mọi x mà tại đó y' ≥ 0
(y' = 0 chỉ tại x = -2, khi a = 2).
Vậy với a ≥ 2 hàm số luôn đồng biến
b) Đồ thị cắt trục hoành tại ba điểm phân biệt khi và chỉ khi phương trình y = 0 có ba nghiệm phân biệt. Ta có
y = 0 có ba nghiệm phân biệt khi và chỉ khi phương trình
(a - 1) x 2 + 3ax + 9a - 6 = 0
Có hai nghiệm phân biệt khác 0. Muốn vậy, ta phải có
Giải hệ trên, ta được:
c) Khi a = 3/2 thì
y' = 0 ⇔ x 2 + 6x + 5 = 0 ⇔ x = -1 hoặc x = -5.
Đồ thị như trên Hình 1.18
Vì
nên từ đồ thị (C) ta suy ngay ra đồ thị của hàm số
như trên Hình 1.19
a) y = x 4 – 2 x 2
y′ = 4 x 3 – 4x = 4x( x 2 – 1)
y′ = 0 ⇔
Bảng biến thiên:
Đồ thị
b) y′ = 4 x 3 – 4mx = 4x( x 2 – m)
Để (Cm) tiếp xúc với trục hoành tại hai điểm phân biệt thì điều kiện cần và đủ là phương trình y’ = 0 có hai nghiệm phân biệt khác 0 và y C T = 0.
+) Nếu m ≤ 0 thì x 2 – m ≥ 0 với mọi x nên đồ thị không thể tiếp xúc với trục Ox tại hai điểm phân biệt.
+) Nếu m > 0 thì y’ = 0 khi x = 0; x = m hoặc x = - m .
f(√m) = 0 ⇔ m 2 – 2 m 2 + m 3 – m 2 = 0 ⇔ m 2 (m – 2) = 0 ⇔ m = 2 (do m > 0)
Vậy m = 2 là giá trị cần tìm.
Khi a = 3/2 thì
y' = 0 ⇔ x 2 + 6x + 5 = 0 ⇔ x = -1 hoặc x = -5.
Đồ thị như trên Hình 1.18
Vì
nên từ đồ thị (C) ta suy ngay ra đồ thị của hàm số
như trên Hình 1.19
nên từ đồ thị (C) ta suy ra ngay đồ thị của hàm số :
\(y=\left|\dfrac{x^3}{6}+\dfrac{3x^2}{2}+\dfrac{5x}{2}\right|\) là hình 18