K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
12 tháng 2 2023

Lời giải:
a. 

$f(-1)=a-b+c$

$f(-4)=16a-4b+c$

$\Rightarrow f(-4)-6f(-1)=16a-4b+c-6(a-b+c)=10a+2b-5c=0$

$\Rightarrow f(-4)=6f(-1)$

$\Rightarrow f(-1)f(-4)=f(-1).6f(-1)=6[f(-1)]^2\geq 0$ (đpcm)

b.

$f(-2)=4a-2b+c$

$f(3)=9a+3b+c$

$\Rightarrow f(-2)+f(3)=13a+b+2c=0$

$\Rightarrow f(-2)=-f(3)$

$\Rightarrow f(-2)f(3)=-[f(3)]^2\leq 0$ (đpcm)

2 tháng 3 2023

a. 


(

1
)
=



+

f(−1)=a−b+c


(

4
)
=
16


4

+

f(−4)=16a−4b+c



(

4
)

6

(

1
)
=
16


4

+


6
(



+

)
=
10

+
2


5

=
0
⇒f(−4)−6f(−1)=16a−4b+c−6(a−b+c)=10a+2b−5c=0



(

4
)
=
6

(

1
)
⇒f(−4)=6f(−1)



(

1
)

(

4
)
=

(

1
)
.
6

(

1
)
=
6
[

(

1
)
]
2

0
⇒f(−1)f(−4)=f(−1).6f(−1)=6[f(−1)] 
2
 ≥0 (đpcm)

b.


(

2
)
=
4


2

+

f(−2)=4a−2b+c


(
3
)
=
9

+
3

+

f(3)=9a+3b+c



(

2
)
+

(
3
)
=
13

+

+
2

=
0
⇒f(−2)+f(3)=13a+b+2c=0



(

2
)
=


(
3
)
⇒f(−2)=−f(3)



(

2
)

(
3
)
=

[

(
3
)
]
2

0
⇒f(−2)f(3)=−[f(3)] 
2
 ≤0 (đpcm

17 tháng 1 2021

f(0) = 1

\(\Rightarrow\) a.02 + b.0 + c = 1 

\(\Rightarrow\) c = 1

Vậy hệ số a = 0; b = 0; c = 1

f(1) = 2

\(\Rightarrow\) a.12 + b.1 + c = 2

\(\Rightarrow\) a + b + c = 2

Vậy hệ số a = 1; b = 1; c = 1

f(2) = 4

\(\Rightarrow\) a.22 + b.2 + c = 4

\(\Rightarrow\) 4a + 2b + c = 4

Vậy hệ số a = 4; b = 2; c = 1

Chúc bn học tốt! (chắc vậy :D)

 

14 tháng 8 2017

a) \(f\left(0\right)=\left|0\right|=0\)

\(f\left(\dfrac{3}{2}\right)=\left|\dfrac{3}{2}\right|=\dfrac{3}{2}\)

\(f\left(7\right)=\left|7\right|=7\)

\(f\left(-1\right)=\left|-1\right|=1\)

\(f\left(-5\right)=\left|-5\right|=5\)

b) \(f\left(x\right)=2\Rightarrow\left|x\right|=2\Rightarrow x=\left\{-2;2\right\}\)

4 tháng 2 2021

\(f\left(-1\right)=2\Rightarrow-a+b-c+d=2\\ f\left(0\right)=1\Rightarrow d=1\\ f\left(1\right)=7\Rightarrow a+b+c+d=7\\ f\left(\dfrac{1}{2}\right)=3\Rightarrow\dfrac{1}{8}a+\dfrac{1}{4}b+\dfrac{1}{2}c+d=3\)

\(d=1\Rightarrow-a+b-c=1;a+b+c=6\\ \Rightarrow2b=7\\ \Rightarrow b=\dfrac{7}{2}\\ \Rightarrow\dfrac{1}{8}a+\dfrac{7}{8}+\dfrac{1}{2}c=2\\ \Rightarrow\dfrac{1}{2}\left(\dfrac{1}{4}a+\dfrac{7}{4}+c\right)=2\\ \Rightarrow\dfrac{1}{4}a+\dfrac{7}{4}+c=4\\ \Rightarrow a+7+4c=16\\ \Rightarrow a+4c=9;a+c=6-\dfrac{7}{2}=\dfrac{5}{2}\\ \Rightarrow3c=\dfrac{13}{2}\Rightarrow c=\dfrac{13}{6}\\ \Rightarrow a=\dfrac{5}{2}-\dfrac{13}{6}=\dfrac{1}{3}\)

Vậy \(\left(a;b;c;d\right)=\left(\dfrac{1}{3};\dfrac{7}{2};\dfrac{13}{6};1\right)\)

AH
Akai Haruma
Giáo viên
31 tháng 12 2018

Lời giải:

a) Khi $m=\sqrt{2}$ thì: \(y=f(x)=2x\)

\(f(1007)=2.1007=2014\)

b) Ta có:

\(f(-1)=m^2(-1)=-m^2\Rightarrow f(f(-1))=f(-m^2)=m^2(-m^2)=-m^4\)

\(f(2)=m^2.2=2m^2\) \(\Rightarrow f(f(2))=f(2m^2)=m^2.2m^2=2m^4\)

\(f(4)=m^2.4=4m^2\)

Để \(f(f(-1))+f(f(2))-f(4)=0\)

\(\Leftrightarrow -m^4+2m^4-4m^2=0\)

\(\Leftrightarrow m^4-4m^2=0\)

\(\Leftrightarrow m^2(m^2-4)=0\Rightarrow m^2-4=0\) (do $m\neq 0$)

\(\Rightarrow m^2=4\Rightarrow m=\pm 2\)

6 tháng 11 2018

a) theo tính chất  ta có: f(0+0)= f(0)+f(0)

=> f(0)=f(0)+f(0)

=> f(0)-f(0)=f(0)+f(0)-f(0)

=> 0=f(0)

hay f(0)=0

b)  f(0)=f(-x+x)=f(-x)+f(x)

=>0=f(-x)+f(x)

=> f(-x)=0-f(x)=-f(x)

c) \(f\left(x_1-x_2\right)=f\left(x_1+\left(-x_2\right)\right)=f\left(x_1\right)+f\left(-x_2\right)=f\left(x_1\right)-f\left(x_2\right)\)