Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Hàm số y = f ( x ) đạt cực tiểu tại x 0 = 0
Hàm số y = f ( x ) có ba điểm cực trị.
Phương trình f ( x ) = 0 có 4 nghiệm phân biệt
Hàm số đạt giá trị nhỏ nhất là -2 trên đoạn [-2;2]
Đặt t = f ( f ( x ) - 1 ) - 2 phương trình trở thành:
f ( t ) = 1 ⇔ t 4 - 4 t 2 + 1 = 1 ⇔ t = 0 ; t = ± 2
TH1: Nếu
t = 0 ⇔ f ( f ( x ) - 1 ) - 2 = 0 ⇔ f ( f ( x ) - 1 ) = 2
Đặt a=f(x)-1 phương trình trở thành:
f ( a ) = 2 ⇔ a 4 - 4 a 2 - 1 = 0 ⇔ a = ± 2 + 5
Nhận xét: Xét hàm số y = f ( x ) - 1 = x 4 - 4 x 2 có y c d = y ( 0 ) = 0 ; y c t = y ± 2 = - 4
Với a ∈ - 4 ; 0 phương trình y = a có bốn nghiệm thực phân biệt. Với a = 0 phương trình y = a có hai nghiệm thực phân biệt. Với a < -4 phương trình y = a vô nghiệm.
Áp dụng cho trường này có 2 + 4 = 6 nghiệm.
TH2: Nếu
t = - 2 ⇔ f ( f ( x ) - 1 ) - 2 = - 2 ⇔ f ( f ( x ) - 1 ) = 0
Đặt a=f(x)-1 phương trình trở thành:
f ( a ) = 0 ⇔ a 4 - 4 a 2 + 1 = 0 ⇔ a = ± 2 + 3
Trường hợp này có 2 + 2 + 4 + 4 = 12 nghiệm.
TH3: Nếu t = 2 ↔ f ( f ( x ) - 1 ) = 4 Đặt a=f(x)-1 phương trình trở thành:
f ( a ) = 4 ⇔ a 4 - a = ± 4 a 2 - 3 = 0 ⇔ a = ± 2 + 7
Trường hợp này có 2 + 4 = 6 nghiệm.
Vậy phương trình đã cho có tất cả 24 nghiệm thực phân biệt.
Chọn đáp án A.