Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:
b:
Sửa đề: Tính diện tích tam giác ABO
tọa độ A là:
\(\left\{{}\begin{matrix}y=0\\x+2=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=-2\\y=0\end{matrix}\right.\)
Vậy: A(-2;0)
Tọa độ B là:
\(\left\{{}\begin{matrix}x=0\\y=x+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0+2=2\end{matrix}\right.\)
Vậy: B(0;2)
O(0;0) A(-2;0); B(0;2)
\(OA=\sqrt{\left(-2-0\right)^2+\left(0-0\right)^2}=\sqrt{4}=2\)
\(OB=\sqrt{\left(0-0\right)^2+\left(2-0\right)^2}=\sqrt{4}=2\)
\(AB=\sqrt{\left(0+2\right)^2+\left(2-0\right)^2}=2\sqrt{2}\)
Vì \(OA^2+OB^2=AB^2\)
nên ΔOAB vuông tại O
=>\(S_{OAB}=\dfrac{1}{2}\cdot OA\cdot OB=\dfrac{1}{2}\cdot2\cdot2=2\)
c: Sửa đề: Tính góc tạo bởi đường thẳng với trục ox
Gọi \(\alpha\) là góc tạo bởi đường thẳng y=x+2 với trục Ox
\(tan\alpha=a=1\)
=>\(\alpha=45^0\)
a) – Vẽ đồ thị y = 2x (1):
Cho x= 0 ⇒ y= 0 ta được O (0, 0)
Cho x= 2 ⇒ y = 4 ta được điểm (2; 4)
- Vẽ đồ thị y = 0,5x (2):
Cho x= 0 ⇒ y = 0 ta được O (0; 0)
Cho x = 4 ⇒ y = 2 ta được điểm (4; 2)
- Vẽ đồ thị y = -x + 6 (3):
Cho x = 0 ⇒ y = 6 được điểm (0; 6)
Cho y = 0 ⇒ x = 6 được điểm (6; 0)
b) Theo đề bài A, B theo thứ tự là giao điểm của đường thẳng (3) với các đường thẳng (1) và (2), nên ta có:
Hoành độ giao điểm của A là nghiệm của phương trình:
- x + 6 = 2x ⇒ x = 2
=> y = 4 => A(2; 4)
Hoành độ giao điểm của B là nghiệm của phương trình:
- x + 6 = 0,5x ⇒ x = 4
⇒ y = 2 ⇒ B(4; 2)
c) Ta có: