K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
3 tháng 8 2021

Pt hoành độ giao điểm:

\(x^3-6x^2+9x=mx\)

\(\Leftrightarrow x\left(x^2-6x+9-m\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2-6x+9-m=0\left(1\right)\end{matrix}\right.\)

Đường thẳng cắt đồ thị tại 3 điểm pb khi và chỉ khi (1) có 2 nghiệm pb khác 0

\(\Leftrightarrow\left\{{}\begin{matrix}9-m\ne0\\\Delta'=9-\left(9-m\right)>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m>0\\m\ne9\end{matrix}\right.\)

Khi đó hoành độ A, B là nghiệm của (1) nên theo hệ thức Viet: 

\(x_A+x_B=6\Rightarrow x_I=\dfrac{x_A+x_B}{2}=3\)

\(\Rightarrow\) I luôn nằm trên đường thẳng song song Oy có pt: \(x-3=0\)

3 tháng 8 2021

ah ơi tại sao Xi lại bằng 3 ạ

27 tháng 7 2017

Chọn B.

Phương trình hoành độ giao điểm:  x + 2 2 x + 1 = mx + m - 1 

Để đường thẳng luôn cắt đồ thị hàm số tại hai điểm phân biệt thuộc hai nhánh của đồ thị thì phương trình (1) phải có hai nghiệm phân biệt  x 1 , x 2  thỏa mãn 

(1) có hai nghiệm phân biệt 

Theo định lý Vi – ét ta có 

29 tháng 7 2019

]

17 tháng 4 2017

Phương trình hoành độ giao điểm:  m x - 1 x + 2 = 2 x - 1   ( 1 )

Điều kiện: x ≠ - 2  Khi đó

 (1)  Suy ra: mx-1=(2x-1) (x+2) hay 2x2-(m-3)x-1=0     (2)     

Đường thẳng d cắt (C) tại hai điểm phân biệt A; B khi và chỉ khi  (1) có hai nghiệm phân biệt khi và chỉ khi ( 2)  có hai nghiệm phân biệt khác -2

⇔ ∆ = [ - ( m - 3 ) ] 2 + 8 > 0 8 + 2 m - 6 - 1 ≠ 0 ⇔ m   ≠ - 1 2 ( * )

Đặt A( x1; 2x1-1); B( x2; 2x2-1) với x1; x2 là hai nghiệm của phương trình (2).

Theo định lý Viet ta có   

x 1 + x 2 = m - 3 2 x 1 x 2 = - 1 2 , k h i   đ ó

A B = ( x 1 - x 2 ) 2 + 4 ( x 1 - x 2 ) 2 = 10 ⇔ 5 [ ( x 1 + x 2 ) 2 - 4 x 1 x 2 ] = 10 ⇔ ( m - 3 2 ) 2 + 2 = 2 ⇔ m = 3        

thỏa (*).

Vậy giá trị m cần tìm là m =3.

 

20 tháng 3 2019

Chọn D

Phương trình hoành độ giao điểm :

Theo yêu cầu bài toán : phải có hai nghiệm phân biệt khác

Gọi , suy ra là trọng tâm của tam giác

 

Theo yêu cầu bài toán :

.

15 tháng 2 2018

Đáp án B

17 tháng 9 2019

Đáp án D

Cách giải:

Xét phương trình hoành độ giao điểm của (C) và đường thẳng y = 2x + m:

Dễ dàng kiểm tra được x = 2 không phải nghiệm của phương trình (*) với mọi m

Để phương trình (*) có 2 nghiệm phân biệt x1, x2 thì Δ > 0 ⇔ (m - 6)2 + 8(2m + 3) > 0 ⇔ m2 + 4m + 60 > 0, luôn đúng

Tiếp tuyến của (C) tại hai điểm giao song song với nhau

Vậy, có 1 giá trị thực của tham số m thỏa mãn yêu cầu đề bài.

21 tháng 11 2018

a) y = x 3  − (m + 4) x 2  − 4x + m

⇔ ( x 2  − 1)m + y − x 3  + 4 x 2  + 4x = 0

Đồ thị của hàm số (1) luôn luôn đi qua điểm A(x; y) với mọi m khi (x; y) là nghiệm của hệ phương trình:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải hệ, ta được hai nghiệm:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vậy đồ thị của hàm số luôn luôn đi qua hai điểm (1; -7) và (-1; -1).

b) y′ = 3 x 2  − 2(m + 4)x – 4

Δ′ = ( m + 4 ) 2  + 12

Vì Δ’ > 0 với mọi m nên y’ = 0 luôn luôn có hai nghiệm phân biệt (và đổi dấu khi qua hai nghiệm đó). Từ đó suy ra đồ thị của (1) luôn luôn có cực trị.

c) Học sinh tự giải.

d) Với m = 0 ta có: y = x 3  – 4 x 2  – 4x.

Đường thẳng y = kx sẽ cắt (C) tại ba điểm phân biệt nếu phương trình sau có ba nghiệm phân biệt:  x 3  – 4 x 2  – 4x = kx.

Hay phương trình  x 2  – 4x – (4 + k) = 0 có hai nghiệm phân biệt khác 0, tức là:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

28 tháng 7 2017

+ Hoành độ giao điểm là nghiệm của phương trình

x3- 3x2-m+ 2= -mx hay ( x-1) ( x2-2x+ m-2) =0

Hay x=1; x2-2x+m-2=0

+ Đặt nghiệm x2= 1;  từ giải thiết bài toán trở thành tìm m để phương trình có 3 nghiệm lập thành cấp số cộng. Khi đó phương trình : x2-2x+m-2 = 0  phải có 2 nghiệm phân biệt (vì theo hệ thức Viet ta có:  x1+ x3= 2= 2x2 ).

Vậy khi đó ta  cần ∆’ > 0( để phương trình có 2 nghiệm phân biệt ) 

 ∆’=1-(m-2)>0 ⇔ m < 3

Chọn C.

4 tháng 11 2019

Đáp án DPhương trình hoành độ gaio điểm của đồ thị (C) và đường thẳng  

Gọi . Ta tính được khi m = 0