K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2017

Đáp án: D.

y' = 3 x 2  + 3x = 3x(x + 1) = 0

⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vậy khoảng cách giữa hai điểm cực trị là:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

24 tháng 2 2019

Ta có y’=3x2-6x-m

Để đồ thị hàm số đã cho có hai điểm cực trị khi  phương trình y’=0  có hai nghiệm phân biệt  ⇔ ∆ ' = 9 + 3 m > 0 ⇔ m > - 3

Ta có 

đường thẳng đi qua hai điểm cực trị  Avà  B là 

Đường thẳng d; x+4y-5=0 có một VTPT là  n d → = ( 1 ; 4 ) .

Đường thẳng  có một VTCP là  n ∆ → = ( 2 m 3 + 2 ;   1 )

Ycbt suy ra:

Suy ra 

thỏa mãn

Chọn A.

21 tháng 9 2018




Chọn B

15 tháng 7 2018

Đáp án: C.

y = -3 là tiệm cận ngang của đồ thị hàm số

Giải sách bài tập Toán 12 | Giải sbt Toán 12

12 tháng 10 2019

Phương trình hoành độ giao điểm của (C)  và đường thẳng d:

2 x + 1 x - 1 = x + m ( x ≠ 1 ) ⇔ x 2 + ( m - 3 ) x - m - 1 = 0     ( 1 )

Khi đó  cắt (C)  tại hai điểm phân biệt  A: B khi và chi khi phương trình (1) có hai nghiệm phân biệt khác -1 

⇔ ( m - 3 ) 2 + 4 ( m + 1 ) > 0 1 2 + ( m - 3 ) - m - 1 ≠ 0 ⇔ m 2 - 2 m + 13 > 0 - 1 ≠ 0  luôn đúng

Gọi A( x; x1+m) ; B( x; x2+m)  trong đó x; x2 là nghiệm của (1) , theo Viet ta có 

x 1 + x 2 = 3 - m x 1 x 2 = - m - 1

Gọi I ( x 1 + x 2 2 ; ( x 1 + x 2 + 2 m 2 )   là trung điểm của AB, suy ra I ( 3 - m 2 ; 3 + m 2 )  , nên

C I → ( - 2 - 3 - m 2 ; 5 - 3 + m 2 )  

⇒ C I = 1 2 ( m - 7 ) 2 + ( 7 - m ) 2 .

Mặt khác A B → = ( x 2 - x 1 ;   x 2 - x 1 )

⇒ A B = 2 ( x 2 - x 1 ) 2 = 2 ( m 2 - 2 m + 13 ) 2

Vậy tam giác ABC  đều khi và chỉ khi

NV
19 tháng 9 2021

Công thức tính nhanh phương trình đường thẳng qua 2 cực trị của hàm bậc 3 dạng: \(y=ax^3+bx^2+cx+d\) là: \(y=\left(\dfrac{2c}{3}-\dfrac{2b^2}{9a}\right)x+\left(d-\dfrac{bc}{9a}\right)\)

Đường thẳng đi qua gốc tọa độ (2 cực trị thẳng hàng O) khi tung độ gốc bằng 0

\(\Rightarrow d-\dfrac{bc}{9a}=0\)

Áp dụng cho bài này: 

\(3-\dfrac{\left(-2\right).m}{9.\dfrac{1}{3}}=0\Rightarrow-2m=9\Rightarrow m=-\dfrac{9}{2}\in\left(-5;-3\right)\)

19 tháng 9 2021

C

18 tháng 9 2019

Đáp án: C.

y = -3 là tiệm cận ngang của đồ thị hàm số

Giải sách bài tập Toán 12 | Giải sbt Toán 12

23 tháng 4 2016

Ta có : \(y'=3x^2-6x+m^2\Rightarrow y'=0\Leftrightarrow3x^2-6x+m^2=0\left(1\right)\)

Hàm số có cực trị \(\Leftrightarrow\left(1\right)\) có 2 nghiệm phân biệt \(x_1;x_2\)

                           \(\Leftrightarrow\Delta'=3\left(3-m^2\right)>0\Leftrightarrow-\sqrt{3}< m< \sqrt{3}\)

Phương trình đường thẳng d' đi qua các điểm cực trị là : \(y=\left(\frac{2}{3}m^2-2\right)x+\frac{1}{3}m^2\)

=> Các điểm cực trị là :

\(A\left(x_1;\left(\frac{2}{3}m^2-2\right)x_1+\frac{1}{3}m^2+3m\right);B\left(x_2;\left(\frac{2}{3}m^2-2\right)x_2+\frac{1}{3}m^2+3m\right);\)

Gọi I là giao điểm của hai đường thẳng d và d' :

\(\Rightarrow I\left(\frac{2m^2+6m+15}{15-4m^2};\frac{11m^2+3m-30}{15-4m^2}\right)\)

A và B đối xứng đi qua d thì trước hết \(d\perp d'\Leftrightarrow\frac{2}{3}m^2-2=-2\Leftrightarrow m=0\)

Khi đó \(I\left(1;-2\right);A\left(x_1;-2x_1\right);B\left(x_2;-2x_2\right)\Rightarrow I\) là trung điểm của AB=> A và B đối xứng nhau qua d

Vậy m = 0 là giá trị cần tìm

11 tháng 12 2018

Suy ra số điểm cực tiểu của hàm số là 4