Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Xét ΔHAD vuông tại H và ΔABD vuông tại A có
góc ADB chung
DO đó:ΔHAD\(\sim\)ΔABD
2: \(BD=\sqrt{20^2+15^2}=25\left(cm\right)\)
\(AH=\dfrac{AB\cdot AD}{BD}=12\left(cm\right)\)
3: Xét ΔABD vuông tại A có AH là đường cao
nên \(HA^2=HD\cdot HB\)
a) Xét \(\Delta HAD\) và \(\Delta ABD\) có:
\(\widehat{AHD}=\widehat{BAD}=90^0\)
\(\widehat{BDA}\) chung
suy ra: \(\Delta HAD~\Delta ABD\)
b) Áp dụng định lý Pytago ta có:
\(BD^2=AD^2+AB^2\)
\(\Leftrightarrow\)\(BD^2=15^2+20^2=625\)
\(\Leftrightarrow\)\(BD=\sqrt{625}=25\)cm
\(\Delta HAD~\Delta ABD\) \(\Rightarrow\)\(\frac{AH}{AB}=\frac{AD}{BD}\) \(\Rightarrow\) \(AH=\frac{AB.AD}{BD}\)
hay \(AH=\frac{20.15}{25}=12\)
P/s: tính AH áp dụng ngay hệ thức lượng cx đc
Bạn tự vẽ hình nha!
a, Xét \(\Delta HAD\) và \(\Delta ABD\) có:
Góc AHD = Góc DAB ( = 90 độ)
Góc ADB chung
=> \(\Delta HAD\) đông dạng\(\Delta ABD\) (g-g)
b, Xét \(\Delta ABD\) vuông tại A có :
\(BD^2=AB^2+AD^2=20^2+15^2=625\)
\(\Rightarrow BD=\sqrt{625}=25\)
Ta có: \(\Delta HAD\) đồng dạng \(\Delta ABD\) (theo câu a)
\(\Rightarrow\dfrac{AH}{AB}=\dfrac{AD}{BD}\Leftrightarrow\dfrac{AH}{20}=\dfrac{15}{25}\Rightarrow AH=12\)
c, Xét \(\Delta HDA\) và \(\Delta HAB\) có:
\(\widehat{AHD}=\widehat{AHB}=90^0\)
\(\widehat{ADH}=\widehat{BAH}\) (cùng phụ với góc DAH )
\(\Rightarrow\Delta HDA\) đồng dạng \(\Delta HAB\) (g - g)
\(\Rightarrow\dfrac{AH}{HB}=\dfrac{HD}{AH}\Rightarrow AH^2=HB.HD\)
d) OD cat BE tai P D la truc tam cua tam giac BEO
=> OP vuong goc BE
Ta co AH//ME( cung vuong BM)=>DH/DM=AD/DE
ta co AF//PE( cung vuong OP)=>DF/DP=DH/DM =>DH/DM=DF/DP
tam giac DHF dong dang tam giacDMP (cgc) =>DHF=DMP => FH//MP(1)
AH//OM(cung vuong BM)=> BH/BM=BA/BO
AK//OP(cung vuong BE)=>BK/BP=BA/BO
=>BH/BM=BK/BP =>HK//MP( theo dltl dao)(2)
tu(1)(2)=> F H K thang hang
d) OD cat BE tai P D la truc tam cua tam giac BEO
=> OP vuong goc BE
Ta co AH//ME( cung vuong BM)=>DH/DM=AD/DE
ta co AF//PE( cung vuong OP)=>DF/DP=DH/DM =>DH/DM=DF/DP
tam giac DHF dong dang tam giacDMP (cgc) =>DHF=DMP => FH//MP(1)
AH//OM(cung vuong BM)=> BH/BM=BA/BO
AK//OP(cung vuong BE)=>BK/BP=BA/BO
=>BH/BM=BK/BP =>HK//MP( theo dltl dao)(2)
tu(1)(2)=> F H K thang hang
a: Xét ΔHAB vuông tại H và ΔCBD vuông tại C có
\(\widehat{HBA}=\widehat{CDB}\)(hai góc so le trong,AB//CD)
=>ΔHAB đồng dạng với ΔCBD
b: Xét ΔHAD vuông tại H và ΔHBA vuông tại H có
\(\widehat{HAD}=\widehat{HBA}\)
Do đó: ΔHAD đồng dạng với ΔHBA
=>\(\dfrac{HA}{HB}=\dfrac{HD}{HA}\)
=>\(HA^2=HB\cdot HD\)