Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi giao điểm hai đường thẳng là A
Ta có:\(-m.\dfrac{1}{m}=-1\)
=>đt: \(y=-mx\perp\) đt:\(y=\dfrac{1}{m}x+4\)
Xét đt:\(y=-mx\)
+)với x=0 thì y=0 . Gọi B(0;0)
Xét đt:\(y=\dfrac{1}{m}x+4\)
+)với x=0 thì y=4. Gọi C(0;4)
=> BC cố định
Xét \(\Delta ABC\) vuông tại A có:
A,B,C \(\in\) đường tròn đường kính BC
=> A \(\in\) đường tròn đường kính BC
hay giao điểm hai đường thẳng luôn nằm trên đường tròn đường kính BC
Giả sử \(A\left(x_0;y_0\right)\) là điểm cố định mà \(y=\left(m-2\right)x+3m-1\) luôn đi qua \(\forall m\)
\(\Rightarrow y_0=\left(m-2\right)x_0+3m-1\)
\(\Leftrightarrow y_0-mx_0+2x_0-3m+1=0\)
\(\Leftrightarrow m\left(x_0+3\right)-y_0-2x_0-1=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_0+3=0\\-y_0-2x_0-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=-3\\y_0=-5\end{matrix}\right.\)
Vậy với mọi m đường thẳng đã cho luôn đi qua điểm cố định có tọa độ (-3; -5)
Gọi điểm cố định đó là \(M\left(x_0;y_0\right)\)
Theo đề bài, ta có:
\(y_0=\left(m-2\right)x_0+3m-1\) với mọi m
\(\Leftrightarrow\left(x_0+3\right)m-2x_0-y_0-1=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_0=-3\\2x_0+y_0+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_0=-3\\y_0=5\end{matrix}\right.\)
Vậy đường thẳng đã cho luôn đi qua điểm \(M\left(-3;5\right)\) cố định.
Giả sử d đi qua điểm cố định có tọa độ \(\left(x_0;y_0\right)\)
\(\Rightarrow\) Với mọi m ta có:
\(y_0=\left(m+1\right)x_0-3m+4\)
\(\Leftrightarrow m\left(x_0-3\right)+x_0-y_0+4=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_0-3=0\\x_0-y_0+4=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_0=3\\y_0=7\end{matrix}\right.\)
Vậy với mọi m thì đường thẳng luôn đi qua điểm cố định có tọa độ \(\left(3;7\right)\)
Gọi điểm cố định mà đường thẳng \(y=\left(m-1\right)x+m+1\) luôn đi qua là \(A\left(x_0;y_0\right)\)
Thay \(x=x_0;y=y_0\)vào hàm số \(y=\left(m-1\right)x+m+1\), ta có:
\(y_0=\left(m-1\right)x_0+m+1\)\(\Leftrightarrow y_0=mx_0-x_0+m+1\)\(\Leftrightarrow m\left(x_0+1\right)-x_0-y_0+1=0\)(*)
Vì phương rình (*) luôn phải có nghiệm đúng với mọi m nên ta có \(\hept{\begin{cases}x_0+1=0\\1-x_0-y_0=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x_0=-1\\1-\left(-1\right)-y_0=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x_0=-1\\y_0=2\end{cases}}\)
Vậy khi m thay đổi thì đường thẳng \(y=\left(m-1\right)x+m+1\)luôn đi qua điểm \(A\left(-1;2\right)\)cố định.
b: y=mx-2x+3
Điểm mà (d) luôn đi qua có tọa độ là:
x=0 và y=-2*0+3=3
Gọi \(A\left(x;y\right)\) là điểm cố định mà (d) luôn đi qua
\(\Rightarrow y=2mx+m+1\Rightarrow2mx+m+1-y=0\)
Vì khi m thay đổi thì (d) vẫn đi qua điểm A \(\Rightarrow\left\{{}\begin{matrix}x=0\\y=m+1\end{matrix}\right.\)
\(\Rightarrow\) (d) luôn đi qua điểm \(A\left(0,m+1\right)\)