K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2021

a)Dùng pp thế ta đc \(\left\{{}\begin{matrix}x=\dfrac{4+2m}{7}\\y=\dfrac{8-3m}{7}\end{matrix}\right.\)

* x<1 => \(\dfrac{4+2m}{7}< 1\) <=> \(\dfrac{4+2m}{7}-1< 0\) <=> m < 3/2

* y<1 => \(\dfrac{8-3m}{7}< 1\Leftrightarrow\dfrac{8-3m}{7}-1< 0\) <=> m >1/3

=> \(\dfrac{1}{3}< m< \dfrac{3}{2}\) 

mà m nguyên

b) Xét giao điểm của 2 đường thẳng 3x+2y =4 và x+2y=3

Tọa độ giao điểm là nghiệm của hệ: \(\left\{{}\begin{matrix}3x+2y=4\\x+2y=3\end{matrix}\right.< =>\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{5}{4}\end{matrix}\right.\)

=> 2 đường thẳng cắt nhau tại A (\(\dfrac{1}{2};\dfrac{5}{4}\))

Để 3 đường thẳng đồng quy thì đường thẳng 2x-y =m đi qua A(\(\dfrac{1}{2};\dfrac{5}{4}\))

nên thay x=1/2, y = 5/4 vào pt đường thẳng 2x-y =m

Ta được m =\(-\dfrac{1}{4}\).

 

3 tháng 5 2017

a) Hệ phương trình vô nghiệm khi và chỉ khi:\(\dfrac{m}{3}=\dfrac{-2}{2}\ne\dfrac{2}{9}\)
Xét \(\dfrac{m}{3}=\dfrac{-2}{2}\Leftrightarrow m=-3\) .
Dễ thấy \(m=-3\) thỏa mãn: \(\dfrac{-3}{3}=\dfrac{-2}{2}\ne\dfrac{2}{9}\)
Vậy \(m=-3\) hệ vô nghiệm.

3 tháng 5 2017

b) Hệ phương trình vô nghiệm khi và chỉ khi:\(\dfrac{2}{1}=\dfrac{-m}{1}\ne\dfrac{5}{7}\)
Xét: \(\dfrac{2}{1}=\dfrac{-m}{1}\Leftrightarrow m=-2\)
Do \(\dfrac{2}{1}=\dfrac{-\left(-2\right)}{1}\ne\dfrac{5}{7}\) thỏa mãn nên m = - 2 hệ phương trình vô nghiệm.

NV
2 tháng 5 2019

\(\left\{{}\begin{matrix}4x+2y=6m+2\\3x+2y=2m-3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=4m+5\\y=-5m-9\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x< 1\\y< 6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}4m+5< 1\\-5m-9< 6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< -1\\m>-3\end{matrix}\right.\) \(\Rightarrow-3< m< -1\)

8 tháng 1 2021

a, \(\left\{{}\begin{matrix}\left(m-1\right)x=m\\\left(m+1\right)y=m+2\end{matrix}\right.\)

=> Hệ luôn có nghiệm duy nhất với mọi m.

b, Với \(x=1,4;y=6,6\)

Ta có: \(\left\{{}\begin{matrix}3.1,4-6.6m=-9\\m.1,4+2.6,6=16\end{matrix}\right.\)

<=> m=2

c, Yêu cầu bài toán <=> (m-1)(m-2) > 0

<=>\(\left[{}\begin{matrix}m>2\\m< 1\end{matrix}\right.\)

9 tháng 1 2021

sao bạn rút gọn đc ý a vậy. Bn lm rõ hơn đc ko

25 tháng 6 2019

5,\(hpt\Leftrightarrow\left\{{}\begin{matrix}x\left(x+y\right)\left(x+2\right)=0\\2\sqrt{x^2-2y-1}+\sqrt[3]{y^3-14}=x-2\end{matrix}\right.\)

Thay từng TH rồi làm nha bạn

3,\(hpt\Leftrightarrow\left\{{}\begin{matrix}x-y=\frac{1}{x}-\frac{1}{y}=\frac{y-x}{xy}\\2y=x^3+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)\left(1+\frac{1}{xy}\right)=0\\2y=x^3+1\end{matrix}\right.\)

thay nhá

3 tháng 11 2019

Bài 1:ĐKXĐ: \(2x\ge y;4\ge5x;2x-y+9\ge0\)\(\Rightarrow2x\ge y;x\le\frac{4}{5}\Rightarrow y\le\frac{8}{5}\)

PT(1) \(\Leftrightarrow\left(x-y-1\right)\left(2x-y+3\right)=0\)

+) Với y = x - 1 thay vào pt (2):

\(\frac{2}{3+\sqrt{x+1}}+\frac{2}{3+\sqrt{4-5x}}=\frac{9}{x+10}\) (ĐK: \(-1\le x\le\frac{4}{5}\))

Anh quy đồng lên đê, chắc cần vài con trâu đó:))

+) Với y = 2x + 3...