Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta có gAMD = gMDC (so le trong), mà gMDC = gADM (gt) => gADM = g AMD
=> tg ADM cân tai A => AD = AM = AB/2 hay AB = 2AD
b) Từ A hạ AI v^g góc với DM => I là trung điểm của DM và AI là phân giác của góc A (tc tg cân)
=> DM = 2 DI (1) và g DAI = 120/2 = 60 độ
Mặt khác gD + gA = 180 độ ( hai góc trong cùng phía, AB // DC) mà gA = 120 độ => gD = 60 độ
tg v^g DAI và tg v^g ADH có gDAI = gADH = 60 độ, AD là cạnh huyền chung
=> tg DAI = tg ADH ( cạnh huyền, góc nhọn)
=> AH = DI (2)
Từ (1) và (2) => DI = 2 AH
c) Gọi N là trung điểm của DC do Dc= AB nên AD = DC/ 2= DN => tg ADN cân tại D mà gD = 60 độ => tg ADN đều => AN = AD = DC/ 2
tg ADC có đường trung tuyến AN = DC/2 => tg ADC v^g tại A hay DA _|_ AC
có tìm thấy câu hỏi này tương tự nhưng nhìn ngay dòng đầu là bn đã sai r :v
a, Do ABCD là hình bình hành ( gt )
=> BAD + ADC = 180 độ ( t/c hbh )
Mà BAD = 120 độ ( gt ) => ADC = 60 độ
Gọi đường phân giác của góc ADC đi qua trung điểm cạnh AB là DI
=> ADI = CDI = 30 độ
Xét tam giác ADI có : DAI + ADI + AID = 180 độ ( tổng 3 góc của 1 tam giác )
=> AID = ADI = 30 độ => Tam giác AID cân
=> AI = AD mà AI = 1/2 AB => AD = 1/2 AB hay AB = 2.AD ( đpcm )
b, CM ADF đều
Do ABCD là hbh ( gt ) => AB = CD ( t/c hbh )
=> 1/2 AB = 1/2 CD => AI = BI = DF = CF
mà AI = AD => AD = DF
=> tam giác ADF cân tại D có góc ADF = 60 độ ( cmt )
=> ADF đều
CM AFC cân :
DO tam giác ADF đều ( cmt ) => AF = DF ( t/c tg đều )
mà DF = FC ( gt ) => AF = FC => tam giác AFC cân tại F ( đpcm )
c, Ta có : AF = DF = CF ( cmt )
=> AF = 1/2 ( DF +CF ) => AF = 1/2 CD
Xét tam giác ADC có AF là trung tuyến ứng với cạnh CD
và AF = 1/2CD
=> tam giác ADC vuông tại A ( dấu hiệu nhận biết tam giác vuông )
=> AD vuông góc với AD ( Đpcm )
A) Ta có:
AB//CD
=> Góc AMD = MDC (so le trong)
=> Tam giác AMD cân tại A
=> AM = AD
Mà AM = 2AB
=> AB = 2AD