Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tứ giác AEDM có: I là giao của AD và ME, I là trung điểm của AD và ME (gt)
\(\Rightarrow AEDM\)là hình bình hành (1) \(\Rightarrow AB//DM\)
Tương tự \(EBNC\)là hình bình hành (2) \(\Rightarrow AB//CN\)
Mặt khác, AB // DC (gt)
Do đó: \(M,N\in CD\)
b, Từ (1), ta được AE = MD
Từ (2), ta được EB = CN
ABCD là hình bình hành (gt) nên AB = DC
\(\Rightarrow AE+EB+AB=MD+CN+DC\)
\(\Rightarrow2AB=MN\Rightarrow MN=2CD\)
Chúc bạn học tốt.
mình vẽ hình không được đẹp lắm bạn cố nhìn nhé
GT: AI=AD; EI =IM; BK=KC;EK=KN
AB//DC
KL: M,N\(\in\)CD; MN=2DC
cmr: tứ giác AEDM là hình bình hành
ta có: AI=ID (gt)
EI=IM(gt)
=> tứ giác AEDM là hình bình hành (định lí 4)
=> AE// MD//DC
Vậy điểm M nằm trên cạnh DC
cmr: tứ giác EBNC là hình bình hành
ta có: BK=KC (gt)
EK=KN(gt)
=> tứ giác EBNC là hình bình hành
=> EB//NC//CD
vậy điểm N nằm trên cạnh CD
b) mình ko biết làm thông cảm
Xét tứ giác AEDM có
I là trung điểm của đường chéo AD
I là trung điểm của đường chéo EM
Do đó: AEDM là hình bình hành
Suy ra: AE//DM
Xét tứ giác BECN có
K là trung điểm của đường chéo BC
K là trung điểm của đường chéo EN
Do đó: BECN là hình bình hành
Suy ra: CN//EB
Ta có: AB//MD
mà AB//CD
và CD,MD có điểm chung là D
nên C,D,M thẳng hàng
Ta có: CM//AB
CN//AB
mà CM và CN có điểm chung là C
nên M,N,C,D thẳng hàng
(((Làm theo hướng đó đúng rồi.. Tiếp nà )))
HFCE là hình bình hành (tự c/m)
=> \(\hept{\begin{cases}HF\text{//}EC\\HF=EC\left(1\right)\end{cases}}\)
Mà EC//AK => HF//AK
=> Δ ANK = Δ FNH (g.c.g)
=> AK=HF (2)
Từ (1) và (2) suy ra AK=EC. Mà AK//EC
=> Tứ giác AKCE là hình bình hành có O là trung điểm của AC
=> O cũng là trung điểm của EK
=> Đpcm...
Ta thấy : 4 điểm A ; F ; C ; E cùng thuộc đường tròn đường kính AC .
Vì trung trực của EF cắt AC tại O nên O là trung điểm AC .
Ta có : OM , AH cùng vuông góc với EF nên OM // AH
=> M là trung điểm CH ( Vì O là trung điểm của AC )
Do đó , tứ giác CFHE có tâm đối xứng M hay CFHE là hình bình hành .
Suy ra : HF // CE // AK
Dễ chứng minh △HNF = △KNA ( g.c.g )
Suy ra : Tứ giác AHFK là hình bình hành .
Vậy : AK = HF = CE , kết hợp với AK // CE , AK vuông góc với AE .
Suy ra : CKAE là hình chữ nhật .
Vì O là trung điểm đường chéo AC nên O là tâm của hình chữ nhật CKAE hay K , O , E thẳng hàng ( đpcm )
a) Xét tứ giác APDE có
M là trung điểm của đường chéo AD(gt)
M là trung điểm của đường chéo EP(E và P đối xứng nhau qua M)
Do đó: APDE là hình bình hành(Dấu hiệu nhận biết hình bình hành)
⇒ED//AP(hai cạnh đối trong hình bình hành APDE)
hay ED//AB
Xét tứ giác BPCF có
N là trung điểm của đường chéo BC(gt)
N là trung điểm của đường chéo PF(P và F đối xứng nhau qua N)
Do đó: BPCF là hình bình hành(Dấu hiệu nhận biết hình bình hành)
⇒BP//CF(hai cạnh đối trong hình bình hành BPCF)
hay CF//AB
Ta có: ABCD là hình bình hành(gt)
nên CD//AB(hai cạnh đối của hình bình hành ABCD)
mà CF//AB(cmt)
và CD, CF có điểm chung là C
nên F∈CD(đpcm1)
Ta có: CD//AB(cmt)
mà DE//AB(cmt)
và DE, CD có điểm chung là D
nên E∈CD(đpcm2)
b) Ta có: AB=AP+PB(P nằm giữa A và B)
mà AP=ED(hai cạnh đối của hình bình hành APDE)
và CF=PB(hai cạnh đối của hình bình hành PBFC)
nên AB=ED+CF
mà AB=DC(hai cạnh đối của hình bình hành ABCD)
nên DC=DE+DF
Ta có: DC+DE+CF=EF(E,D,C,F thẳng hàng)
nên DC+DC=EF
hay EF=2DC(đpcm)