Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, từ đề ta suy ra được : 3 điểm K; C;J trùng nhau.
từ t/c hbh => AK=BD
=> \(\dfrac{IB}{ID}=\dfrac{IA}{IK}\)
Áp dụng đl ta-lét vào tam giác ADK có :\(\dfrac{IJ}{IA}=\dfrac{AD}{DK}\)
Áp dụng đl ta-lét vào tam giác CDK có :\(\dfrac{IB}{ID}=\dfrac{BK}{DK}\)
mà AD và BK = nhau => \(\dfrac{IB}{ID}=\dfrac{IJ}{IA}\)
b/ từ đề bài ta đã có : 3 điểm gồm K;C;J trùng nhau tại một điểm
=> IJ.IK=IC.IC=\(IC^2\)
dựa vào t/c hbh 2 đường chéo cắt nhau tại trug điểm mỗi đường sẽ có:
IA=IC
từ trên suy ra : \(IA^2=IC^2\)
hay nói cách khác:\(IA^2=IJ.IK\) ( đpcm)
Xét hình thang ABCD có
I là trung điểm của AD
IK//AB//CD
Do đó: K là trung điểm của BC
Xét hình thang ABCD có
I là trung điểm của AD
K là trung điểm của BC
Do đó: IK là đường trung bình của hình thang ABCD
Suy ra: \(IK=\dfrac{AB+CD}{2}\)
Hình: Tự vẽ
+) Vì AB // DK, áp dụng hệ quả định lí Ta-let ta có: \(\frac{IK}{IA}=\frac{ID}{IB}\left(1\right)\)
Vì AD // BJ, áp dụng hệ quả định lí Ta-let ta có: \(\frac{ID}{IB}=\frac{AI}{\text{IJ}}\left(2\right)\)
Từ (1), (2) \(\Rightarrow\frac{IA}{\text{IJ}}=\frac{IK}{IA}\)
\(\Rightarrow IA^2=\text{IJ}.IK\left(\text{đ}pcm\right)\)
a/ Chứng minh rằng AK=KC,BI=ID
Vì FE là đường trung bình hình thang nên FE//AB//CD
E, F là trung điểm của AD và BC nên AK=KC
BI=ID
( trong tam giác đường thẳng qua trung điểm của 1 cạnh, // với cạnh thứ 2 thì qua trung điểm cạnh thứ 3)
b/ CHo AB=6cm,CD=10cm.Tính độ dài EI,KF,IK
EI=KF=1/2.AB=1/2.6=3 (đường trung bình tam giác)
FE=(AB+CD)/2= (10+6)/2=8
IK= FE-EI-KF=8-3-3=2
hình thang ABCD (AB // CD) , E và F lần lượt là trung điểm của AD và BC
=>EF là đường trung bình của hình thang ABCD
=> EF // AB (1)
EF // CD (2)
tam giác ABC có F là trung điểm của BC
từ (1) => FK là đường trung bình của tam giác ABC
=> K là trung điểm của AC
=> AK = KC
tam giác ADC có E là trung điểm của AD
từ (2) => FK là đường trung bình của tam giác ADC
=> I là trung điểm của BD
=> BI = ID
sửa giùm
tam giác ABD có E là trung điểm của AD
từ (2) => EI là đường trung bình của tam giác ABD
=> I là trung điểm của BD
=> BI = ID
a: Xét ΔAIB và ΔKID có
\(\widehat{AIB}=\widehat{KID}\)
\(\widehat{IAB}=\widehat{IKD}\)
Do đó: ΔAIB\(\sim\)ΔKID
Suy ra: IA/IK=IB/ID