K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2021

Lời giải :

Để \(MPNQ\) là hình chữ nhật thì \(MN=PQ\)

Ta có : \(AM=\dfrac{1}{2}AD=\dfrac{1}{2}BC=BN\) , \(AM\) song song với BN \(\Rightarrow AMNB\) là hình bình hành \(\Rightarrow AB=MN\Rightarrow MN=CD\) 

Ta lại có : \(AP=PQ=QC\) ( cmt ) \(\Rightarrow PQ=\dfrac{1}{3}AC\)

\(\Rightarrow CD=MN=PQ=\dfrac{1}{3}AC\)

\(\dfrac{CA}{CD}=3\) thì MPNQ là hình chữ nhật

25 tháng 12 2021

làm phần a hộ đko ạ

 

26 tháng 7 2016

bạn tự vẽ hình

a) Vì tứ giác ABCD là hình bình hành (gt)

=> BC//AD hay BN//MD  (1)

     BC=AD

Mà BN=\(\frac{1}{2}\)BC (vì N là trung điểm của BC)

      MD=\(\frac{1}{2}\)AD(vì M là trung điểm của AD)

=> BN=MD  (2)

Từ (1) , (2) suy ra: Tứ giác BNDM là hbh

Xét \(\Delta\)ADQ có: MP//DQ(vì BNDM là hbh(cmt))

                        MA=MD(gt)

=> AP=PQ(3)

Chứng minh tương tự ta cũng có: PQ=QC (4)

Từ (3) và (4) suy ra: AP=PQ=QC

b) Xét \(\Delta\)APM và \(\Delta\) CQN có:

      AM=NC

      ^ MAP=^NCQ(soletrong do AD//BC)

      AP=CQ(cmt)

=>\(\Delta\)APQ=\(\Delta\)CQN (g.c.g)

=>MP=QN

Tứ giác MPNQ có: MP//QN(vì BNQM là hbh(cmt))

                               MP=QN(cmy)

=> Tứ giác MPNQ là hbh

23 tháng 10 2022

ta có ABCD là hình bình hành
=> AD//BC,ad=bc 
mà MN là trung điểm AD,BC
=> DM//BN,DM=B1
=>DMBN là hình bình hành 
=.BM//DN->PM//DQ
Mà m là trung điểm AD
MP là trung điểm AD
P là trung điểm AQ
PA=PQ
tương tự cq=cp
AP=PQ=QC

21 tháng 1 2019

a) Áp dụng tính chất đường trung bình của tam giác cho DABC và DDBC ta sẽ có:

MQ//PN//BC và MQ = PN = 0.5BC ÞMPNQ là hình bình hành.

b) Tương tự ta có QN//MP//AD và QN = MP = 0.5AD.

Nên để MPNQ là hình thoi thì MN ^ PQ khi đó MN ^ CD và trung trực hay trục đối xứng của AB và CD.

Þ hình thang ABCD là hình thang cân

24 tháng 10 2021

a: Xét ΔABC có

M là trung điểm của AB

P là trung điểm của AC

Do đó: MP là đường trung bình của ΔBAC

Suy ra: MP//BC và \(MP=\dfrac{BC}{2}\left(1\right)\)

Xét ΔBDC có

Q là trung điểm của BD

N là trung điểm của CD

Do đó: QN là đường trung bình của ΔBDC

Suy ra: QN//BC và \(QN=\dfrac{BC}{2}\left(2\right)\)

Từ (1) và (2) suy ra MP//QN và MP=QN

hay MQNP là hình bình hành

22 tháng 11 2018

Vì ABCD là hình bình hành

=>BC//AD hay BN//MD(1)

BC=AD

Mà BN=1/2BC( Vì N là trung điểm của BC)

MD=1/2AD (Vì M là trung điểm của AC)

=>BN=MD(2)

Từ (1) và (2) suy raBNDM là hình bình hành

Xét tam giác ADQcó:MP//DQ(vì BNDM là hbh(cmt)

=> MA=MD

=>AP=PQ(3)

CM tương tự ta được:PQ=QC(4)

Từ (3) và (4) suy ra AP=PQ=QC

b,Xét tam giác APM và tam giác CQNcó

AM=NC

Góc MAP=Góc NCQ(so le trong)

AP=CQ

=>Tam giác APM= tam giác CQN

=>MP=QN

Tứ giác MPQN có MP//QN( vì BNQM là hbh)

MP=QN

=> Tứ giác MPNQ là hình bình hành

Mình không biết làm ý c,d

Bạn tự vẽ hình nha!!

22 tháng 11 2018

câu c là xác định tỉ số của CA/CD để MNPQ là hbh

d, Xác định góc ACD để MNPQ là hbh

mong mọi người giải hộ em

4 tháng 3 2015

* Hướng dẫn câu b:

Gọi I là giao điểm của Gx và PQ. Kéo dài PQ cắt hai cạnh AD và BC theo thứ tự là E và F.

Góc MPQ = góc GEF (so le trong do MP // AD)

Góc MQP = góc GFE (so le trong do MQ // BC)

góc MPQ = góc MQP (tam giác MPQ cân do MP = MQ)

=> góc GEF = góc GEF -> tam giác GEF cân tại G

mà GI là phân giác của góc G -> GI vuông góc với EF

-> Gx vuông góc với PQ -> Gx // MN (MN vuông góc với PQ do hình thoi có 2 đường chéo vuông góc).

5 tháng 11 2017

Ta có thể tìm các bội của một số khác 0 bằng cách nhân số đó lần lược cho 1, 2, 3, …

Ví dụ :

B(5) = {5.1, 4.2, 5.3, …} = {5, 10, 15, …}

Ta có thể tìm các ước của một số a (a > 1) bằng cách lần lược chia số a cho số tự nhiên từ 1 đến a để xét xem a chia hết cho những số nào, khi đó các số ấy là ước của a.