K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔDAM và ΔBCN có 

AD=BC

\(\widehat{DAM}=\widehat{BCN}\)

AM=CN

Do đó: ΔDAM=ΔBCN

Suy ra: DM=BN

22 tháng 9 2019

bn tự kẻ hình nha!

a) ta có: AB = DC ( ACBD là hình bình hành)

----> BM = CN ( = 1/2. AB = 1/2 . DC)

mà BM // CN

-----> BMNC là h.b.h

b) xét tam giác AMD và tam giác CNB

có: AM = CN ( = 1/2.AB = 1/2.CD)

AD = BC (gt)

^DAM = ^NCB (gt)

-----> tg AMD = tg CNB (c-g-c)

-----> DM = NB ( 2 cạnh t/ ư)

c) AN cắt DM tại I, MC cắt BN tại K. chứng minh : AC,BD,MN,IK

bài làm

Gọi AC cắt DB tại E

ta có: tg AMD = tg CNB (cmt)

-----> ^AMD = ^CNB

mà ^AMD = ^MDN ( AB//DC)

-----> ^CNB = ^MDN

mà ^CNB, ^MDN nằm ở vị trí đồng vị 

-----> DM// BN

và DM = BN (pb)

-----> DMBN là h.b.h

-------> BD cắt MN tại E ( do 2 đường chéo của h.b.h cắt nhau tại trung điểm của mỗi đường)

tương tự  bn cx chứng minh: MINK là h.b.h   ( MI = NK = 1/2.DM = 1/2.BN)

-----> MN cắt IK tại E

------------> AC,BD, MN,IK đồng quy tại E

4 tháng 1 2023

quên cách làm mất rồi...

4 tháng 1 2023

khác gì nhaubucminh

 

Bạn xem lại đề, BM cắt CM tại F???

22 tháng 7 2021

ok bạn để mik xem lại đề ạ 

 

16 tháng 11 2021

a: Xét tứ giác BMDN có

O là trung điểm của MN

O là trung điểm của BD

Do đó: BMDN là hình bình hành

27 tháng 9 2017

 B1 a) Xét ∆AHD và ∆CKB có: + góc AHD = góc CKB = 90độ 
+ AD = BC 
+ góc ADH = góc CBK(so le trong) => ∆AHD = ∆CKB(c.g.c) => AH = CK 
Xét tứ giác AHCK có AH // CK(cùng ⊥ BD) và AH = CK => AHCK là hbh. 

b) Do AHCK là hình bình hành => AK // CH => AM // CN, do ABCD là hình bình hành => AD // BC => AN // BM. Xét tứ giác AMCN có AM // CH và AN // BM => AMCN là hình bình hành => AN = CM. 

c) Nối A -> C,M -> N do O là trung điểm HK => O là trung điểm AC => O là trung điểm MN => O;M;N thẳng hàng (do 2 đường chéo của hbh cắt nhau tại trung điểm mỗi đường) 

B2: 

B3: đề sai. 

B4: Kẻ EI // AB(I thuộc BC) Nối I -> F; I -> K; F -> C. => ta chứng minh được ADCI là hbh (bạn tự chứng minh) Dựa theo tính chất đối xứng ta chứng minh được: ∆FIC = ∆KIC, ∆FIC có FC = IC ( = DE) và góc C = 60độ => ∆FIC đều => ∆KIC đều => góc CIK = 60độ. Do ADCI là hbh => góc AIC = góc D = 120 độ => góc CIK + góc AIC = 60độ + 120 độ = 180độ => A;I;K thẳng hàng, mà AI // AB (cách kẻ) => AK // AB(đpcm)