K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
5 tháng 2 2021

Kẻ \(BK\perp AC\Rightarrow BK\perp\left(SAC\right)\)

\(\Rightarrow BK=d\left(B;\left(SAC\right)\right)\)

\(\dfrac{1}{BK^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\Rightarrow BK=\dfrac{AB.AC}{\sqrt{AB^2+AC^2}}=\dfrac{a\sqrt{3}}{2}\)

Kẻ \(CP\perp BH\Rightarrow CP\perp\left(SBH\right)\)

\(\Rightarrow CP=d\left(C;\left(SBH\right)\right)\)

\(\widehat{CBP}=\widehat{ACB}=30^0\Rightarrow CH=BC.sin30^0=\dfrac{a\sqrt{3}}{2}\)

\(BH=\dfrac{AC}{2}=\dfrac{1}{2}\sqrt{AB^2+AC^2}=a\)\(\Rightarrow SH=\sqrt{SB^2-BH^2}=a\)

Kẻ \(HE\perp BC\) , kẻ \(HF\perp SE\Rightarrow HF=d\left(H;\left(SBC\right)\right)\)

\(HE=CH.sin30^0=\dfrac{a}{2}\) 

\(\dfrac{1}{HF^2}=\dfrac{1}{SH^2}+\dfrac{1}{HE^2}\Rightarrow HF=\dfrac{SH.HE}{\sqrt{SH^2+HE^2}}=\dfrac{a\sqrt{5}}{5}\)

11 tháng 6 2019

9 tháng 10 2019

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) BC ⊥ SA & BC ⊥ AB) ⇒ BC ⊥ (SAB)

⇒ BC ⊥ SB.

⇒ tam giác SBC vuông tại B.

b) BH ⊥ AC & BH ⊥ SA ⇒ BC ⊥ (SAC)

⇒ (SBH) ⊥ (SAC).

c) d[B, (SAC)] = BH. Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

23 tháng 2 2021

Gọi HH là trung điểm của BCBC suy ra

AH=BH=CH=1\2BC=a\2.

Ta có: SH⊥(ABC)⇒SH=√SB2−BH2=a√3\2

ˆ(SA,(ABC))=ˆ(SA,HA)=ˆSAH=α

⇒tanα=SH\AH=√3⇒α=60∘

22 tháng 7 2019

ĐÁP ÁN: B

23 tháng 5 2020

3+? =2 trả lời đc thì giải đc

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

a: BC vuông góc SA

BC vuôg góc AB

=>BC vuông góc (SAB)

b: BI vuông góc SA
BI vuông góc AC

=>BI vuông góc (SAC)