K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2019

Đáp án B

HDG:

Dễ dàng chứng minh ∆ S B C  vuông tại B

Ta có (SAB)  ⊥ (SBC) theo giao tuyến SB. Kẻ

21 tháng 6 2018

 

Đáp án B

Hình chiếu của S xuống đáy ABC là tâm của đáy tức là M với M là trung điểm của BC.

Ta có 

Vì ABC là tam giác vuông cân nên H cũng là trung điểm của  vì thế 

Ta có:  =  a 2 2

 

29 tháng 9 2019

 

Đáp án B

Gọi I là hình chiếu của điểm S trên mặt phẳng (ABC). Do SA = SB = SC nên IA = IB = IC => I là tâm đường tròn ngoại tiếp ∆ ABC . Mà ABC vuông cân tại A nên I là trung điểm của BC và IA = IB = IC = BC/2 =  a 2 2

Ta có IA là hình chiếu của SA trên mặt phẳng (ABC) nên 

Do ∆ SIA vuông tại I nên  vuông cân tại I, khi đó :

 

9 tháng 10 2019

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) BC ⊥ SA & BC ⊥ AB) ⇒ BC ⊥ (SAB)

⇒ BC ⊥ SB.

⇒ tam giác SBC vuông tại B.

b) BH ⊥ AC & BH ⊥ SA ⇒ BC ⊥ (SAC)

⇒ (SBH) ⊥ (SAC).

c) d[B, (SAC)] = BH. Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

12 tháng 2 2018

Đáp án C

Dựng  

Dựng

=> d(B;(SAC))

4 tháng 10 2019

Chọn A

Gọi M là trung điểm BC

Gọi K là hình chiếu của A trên SM , suy ra AK ⊥ SM.   (1)

24 tháng 6 2019

Giải sách bài tập Toán 11 | Giải sbt Toán 11

+ Xác định góc của SC với (SAD).

Hạ CE ⊥ AD, ta có E là trung điểm AD và CE ⊥ (SAD) nên ∠(CSE) = 30 o .

∠(CSE) cũng chính là góc giữa SC và mp(SAD).

Trong ΔCSE, ta có:

S E   =   C E . tan 60 o   =   a 3   ⇒   S A   =   S E 2 -   A E 2   =   3 a 2   -   a 2   =   a 2 .

Nhận xét

Gọi M, N lần lượt là trung điểm của AB và AE.

Ta có MN // BE nên MN // CD. Như vậy MN // (SCD). Ta suy ra

d(M,(SCD)) = d(N,(SCD)).

Mà DN/DA = 3/4 nên d(N,(SCD)) = 3/4 d(A,(SCD))

+ Xác định khoảng cách từ A đến (SCD).

Vì vậy tam giác ACD vuông cân tại C nên CD vuông góc với AC.

CD ⊥ AC & CD ⊥ SA ⇒ CD ⊥ (SAC) ⇒ (SCD) ⊥ (SAC).

Hạ AH ⊥ SC, ta có AH ⊥ (SCD).

4 tháng 7 2017

+ Gọi H là trung điểm của BC

Do tam giác ABC cân tại A nên AH ⊥ BC, tam giác SBC đều nên SH  ⊥ BC

Mà (SBC)  ⊥ (ABC)

Do đó SH  ⊥ (ABC)

+ Gọi K là hình chiếu vuông góc của H lên SA ⇒  HK ⊥ SA

Ta có  B C ⊥ S H B C ⊥ A H ⇒ B C ⊥ S A H ⇒ B C ⊥ H K

Vậy HK là đoạn vuông góc chung của BC và SA, do đó khoảng cách giữa BC và SA là HK.

+ Tính HK

Tam giác SBC đều cạnh a ⇒  SH =  a 3 2

Tam giác ABC vuông cân tại A ⇒  AH =  B C 2 = a 2

Tam giác SHA vuông tại H có HK là đường cao ⇒ 1 H K 2 = 1 S H 2 + 1 A H 2  

HK =  a 3 4

Vậy d(SA; BC) = a 3 4 .

Đáp án C

31 tháng 5 2018

Đáp án B.